Metamath Proof Explorer


Theorem bj-ru0

Description: The FOL part of Russell's paradox ru (see also bj-ru1 , bj-ru ). Use of elequ1 , bj-elequ12 (instead of eleq1 , eleq12d as in ru ) permits to remove dependency on ax-10 , ax-11 , ax-12 , ax-ext , df-sb , df-clab , df-cleq , df-clel . (Contributed by BJ, 12-Oct-2019) (Proof modification is discouraged.)

Ref Expression
Assertion bj-ru0 ¬ x x y ¬ x x

Proof

Step Hyp Ref Expression
1 pm5.19 ¬ y y ¬ y y
2 elequ1 x = y x y y y
3 bj-elequ12 x = y x = y x x y y
4 3 anidms x = y x x y y
5 4 notbid x = y ¬ x x ¬ y y
6 2 5 bibi12d x = y x y ¬ x x y y ¬ y y
7 6 spvv x x y ¬ x x y y ¬ y y
8 1 7 mto ¬ x x y ¬ x x