Description: Substitution in an equality (use the more general version bj-sbeq instead, without disjoint variable condition). (Contributed by BJ, 6-Oct-2018) (New usage is discouraged.) (Proof modification is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | bj-sbeqALT | |- ( [ y / x ] A = B <-> [_ y / x ]_ A = [_ y / x ]_ B ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcsb1v | |- F/_ x [_ y / x ]_ A |
|
2 | nfcsb1v | |- F/_ x [_ y / x ]_ B |
|
3 | 1 2 | nfeq | |- F/ x [_ y / x ]_ A = [_ y / x ]_ B |
4 | csbeq1a | |- ( x = y -> A = [_ y / x ]_ A ) |
|
5 | csbeq1a | |- ( x = y -> B = [_ y / x ]_ B ) |
|
6 | 4 5 | eqeq12d | |- ( x = y -> ( A = B <-> [_ y / x ]_ A = [_ y / x ]_ B ) ) |
7 | 3 6 | sbiev | |- ( [ y / x ] A = B <-> [_ y / x ]_ A = [_ y / x ]_ B ) |