Metamath Proof Explorer


Theorem bj-sbeqALT

Description: Substitution in an equality (use the more general version bj-sbeq instead, without disjoint variable condition). (Contributed by BJ, 6-Oct-2018) (New usage is discouraged.) (Proof modification is discouraged.)

Ref Expression
Assertion bj-sbeqALT
|- ( [ y / x ] A = B <-> [_ y / x ]_ A = [_ y / x ]_ B )

Proof

Step Hyp Ref Expression
1 nfcsb1v
 |-  F/_ x [_ y / x ]_ A
2 nfcsb1v
 |-  F/_ x [_ y / x ]_ B
3 1 2 nfeq
 |-  F/ x [_ y / x ]_ A = [_ y / x ]_ B
4 csbeq1a
 |-  ( x = y -> A = [_ y / x ]_ A )
5 csbeq1a
 |-  ( x = y -> B = [_ y / x ]_ B )
6 4 5 eqeq12d
 |-  ( x = y -> ( A = B <-> [_ y / x ]_ A = [_ y / x ]_ B ) )
7 3 6 sbiev
 |-  ( [ y / x ] A = B <-> [_ y / x ]_ A = [_ y / x ]_ B )