Description: Substitution in an equality (use the more general version bj-sbeq instead, without disjoint variable condition). (Contributed by BJ, 6-Oct-2018) (New usage is discouraged.) (Proof modification is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | bj-sbeqALT | |- ( [ y / x ] A = B <-> [_ y / x ]_ A = [_ y / x ]_ B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcsb1v | |- F/_ x [_ y / x ]_ A |
|
| 2 | nfcsb1v | |- F/_ x [_ y / x ]_ B |
|
| 3 | 1 2 | nfeq | |- F/ x [_ y / x ]_ A = [_ y / x ]_ B |
| 4 | csbeq1a | |- ( x = y -> A = [_ y / x ]_ A ) |
|
| 5 | csbeq1a | |- ( x = y -> B = [_ y / x ]_ B ) |
|
| 6 | 4 5 | eqeq12d | |- ( x = y -> ( A = B <-> [_ y / x ]_ A = [_ y / x ]_ B ) ) |
| 7 | 3 6 | sbiev | |- ( [ y / x ] A = B <-> [_ y / x ]_ A = [_ y / x ]_ B ) |