Description: Substitution in an equality (use the more general version bj-sbeq instead, without disjoint variable condition). (Contributed by BJ, 6-Oct-2018) (New usage is discouraged.) (Proof modification is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | bj-sbeqALT | ⊢ ( [ 𝑦 / 𝑥 ] 𝐴 = 𝐵 ↔ ⦋ 𝑦 / 𝑥 ⦌ 𝐴 = ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcsb1v | ⊢ Ⅎ 𝑥 ⦋ 𝑦 / 𝑥 ⦌ 𝐴 | |
| 2 | nfcsb1v | ⊢ Ⅎ 𝑥 ⦋ 𝑦 / 𝑥 ⦌ 𝐵 | |
| 3 | 1 2 | nfeq | ⊢ Ⅎ 𝑥 ⦋ 𝑦 / 𝑥 ⦌ 𝐴 = ⦋ 𝑦 / 𝑥 ⦌ 𝐵 |
| 4 | csbeq1a | ⊢ ( 𝑥 = 𝑦 → 𝐴 = ⦋ 𝑦 / 𝑥 ⦌ 𝐴 ) | |
| 5 | csbeq1a | ⊢ ( 𝑥 = 𝑦 → 𝐵 = ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) | |
| 6 | 4 5 | eqeq12d | ⊢ ( 𝑥 = 𝑦 → ( 𝐴 = 𝐵 ↔ ⦋ 𝑦 / 𝑥 ⦌ 𝐴 = ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) ) |
| 7 | 3 6 | sbiev | ⊢ ( [ 𝑦 / 𝑥 ] 𝐴 = 𝐵 ↔ ⦋ 𝑦 / 𝑥 ⦌ 𝐴 = ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) |