| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dfcleq | ⊢ ( 𝐴  =  𝐵  ↔  ∀ 𝑧 ( 𝑧  ∈  𝐴  ↔  𝑧  ∈  𝐵 ) ) | 
						
							| 2 | 1 | sbbii | ⊢ ( [ 𝑦  /  𝑥 ] 𝐴  =  𝐵  ↔  [ 𝑦  /  𝑥 ] ∀ 𝑧 ( 𝑧  ∈  𝐴  ↔  𝑧  ∈  𝐵 ) ) | 
						
							| 3 |  | sbsbc | ⊢ ( [ 𝑦  /  𝑥 ] ∀ 𝑧 ( 𝑧  ∈  𝐴  ↔  𝑧  ∈  𝐵 )  ↔  [ 𝑦  /  𝑥 ] ∀ 𝑧 ( 𝑧  ∈  𝐴  ↔  𝑧  ∈  𝐵 ) ) | 
						
							| 4 |  | sbcal | ⊢ ( [ 𝑦  /  𝑥 ] ∀ 𝑧 ( 𝑧  ∈  𝐴  ↔  𝑧  ∈  𝐵 )  ↔  ∀ 𝑧 [ 𝑦  /  𝑥 ] ( 𝑧  ∈  𝐴  ↔  𝑧  ∈  𝐵 ) ) | 
						
							| 5 | 2 3 4 | 3bitri | ⊢ ( [ 𝑦  /  𝑥 ] 𝐴  =  𝐵  ↔  ∀ 𝑧 [ 𝑦  /  𝑥 ] ( 𝑧  ∈  𝐴  ↔  𝑧  ∈  𝐵 ) ) | 
						
							| 6 |  | sbcbig | ⊢ ( 𝑦  ∈  V  →  ( [ 𝑦  /  𝑥 ] ( 𝑧  ∈  𝐴  ↔  𝑧  ∈  𝐵 )  ↔  ( [ 𝑦  /  𝑥 ] 𝑧  ∈  𝐴  ↔  [ 𝑦  /  𝑥 ] 𝑧  ∈  𝐵 ) ) ) | 
						
							| 7 | 6 | elv | ⊢ ( [ 𝑦  /  𝑥 ] ( 𝑧  ∈  𝐴  ↔  𝑧  ∈  𝐵 )  ↔  ( [ 𝑦  /  𝑥 ] 𝑧  ∈  𝐴  ↔  [ 𝑦  /  𝑥 ] 𝑧  ∈  𝐵 ) ) | 
						
							| 8 | 7 | albii | ⊢ ( ∀ 𝑧 [ 𝑦  /  𝑥 ] ( 𝑧  ∈  𝐴  ↔  𝑧  ∈  𝐵 )  ↔  ∀ 𝑧 ( [ 𝑦  /  𝑥 ] 𝑧  ∈  𝐴  ↔  [ 𝑦  /  𝑥 ] 𝑧  ∈  𝐵 ) ) | 
						
							| 9 |  | sbcel2 | ⊢ ( [ 𝑦  /  𝑥 ] 𝑧  ∈  𝐴  ↔  𝑧  ∈  ⦋ 𝑦  /  𝑥 ⦌ 𝐴 ) | 
						
							| 10 |  | sbcel2 | ⊢ ( [ 𝑦  /  𝑥 ] 𝑧  ∈  𝐵  ↔  𝑧  ∈  ⦋ 𝑦  /  𝑥 ⦌ 𝐵 ) | 
						
							| 11 | 9 10 | bibi12i | ⊢ ( ( [ 𝑦  /  𝑥 ] 𝑧  ∈  𝐴  ↔  [ 𝑦  /  𝑥 ] 𝑧  ∈  𝐵 )  ↔  ( 𝑧  ∈  ⦋ 𝑦  /  𝑥 ⦌ 𝐴  ↔  𝑧  ∈  ⦋ 𝑦  /  𝑥 ⦌ 𝐵 ) ) | 
						
							| 12 | 11 | albii | ⊢ ( ∀ 𝑧 ( [ 𝑦  /  𝑥 ] 𝑧  ∈  𝐴  ↔  [ 𝑦  /  𝑥 ] 𝑧  ∈  𝐵 )  ↔  ∀ 𝑧 ( 𝑧  ∈  ⦋ 𝑦  /  𝑥 ⦌ 𝐴  ↔  𝑧  ∈  ⦋ 𝑦  /  𝑥 ⦌ 𝐵 ) ) | 
						
							| 13 | 5 8 12 | 3bitri | ⊢ ( [ 𝑦  /  𝑥 ] 𝐴  =  𝐵  ↔  ∀ 𝑧 ( 𝑧  ∈  ⦋ 𝑦  /  𝑥 ⦌ 𝐴  ↔  𝑧  ∈  ⦋ 𝑦  /  𝑥 ⦌ 𝐵 ) ) | 
						
							| 14 |  | dfcleq | ⊢ ( ⦋ 𝑦  /  𝑥 ⦌ 𝐴  =  ⦋ 𝑦  /  𝑥 ⦌ 𝐵  ↔  ∀ 𝑧 ( 𝑧  ∈  ⦋ 𝑦  /  𝑥 ⦌ 𝐴  ↔  𝑧  ∈  ⦋ 𝑦  /  𝑥 ⦌ 𝐵 ) ) | 
						
							| 15 | 13 14 | bitr4i | ⊢ ( [ 𝑦  /  𝑥 ] 𝐴  =  𝐵  ↔  ⦋ 𝑦  /  𝑥 ⦌ 𝐴  =  ⦋ 𝑦  /  𝑥 ⦌ 𝐵 ) |