Metamath Proof Explorer


Theorem bj-sbeq

Description: Distribute proper substitution through an equality relation. (See sbceqg ). (Contributed by BJ, 6-Oct-2018)

Ref Expression
Assertion bj-sbeq ( [ 𝑦 / 𝑥 ] 𝐴 = 𝐵 𝑦 / 𝑥 𝐴 = 𝑦 / 𝑥 𝐵 )

Proof

Step Hyp Ref Expression
1 dfcleq ( 𝐴 = 𝐵 ↔ ∀ 𝑧 ( 𝑧𝐴𝑧𝐵 ) )
2 1 sbbii ( [ 𝑦 / 𝑥 ] 𝐴 = 𝐵 ↔ [ 𝑦 / 𝑥 ] ∀ 𝑧 ( 𝑧𝐴𝑧𝐵 ) )
3 sbsbc ( [ 𝑦 / 𝑥 ] ∀ 𝑧 ( 𝑧𝐴𝑧𝐵 ) ↔ [ 𝑦 / 𝑥 ]𝑧 ( 𝑧𝐴𝑧𝐵 ) )
4 sbcal ( [ 𝑦 / 𝑥 ]𝑧 ( 𝑧𝐴𝑧𝐵 ) ↔ ∀ 𝑧 [ 𝑦 / 𝑥 ] ( 𝑧𝐴𝑧𝐵 ) )
5 2 3 4 3bitri ( [ 𝑦 / 𝑥 ] 𝐴 = 𝐵 ↔ ∀ 𝑧 [ 𝑦 / 𝑥 ] ( 𝑧𝐴𝑧𝐵 ) )
6 sbcbig ( 𝑦 ∈ V → ( [ 𝑦 / 𝑥 ] ( 𝑧𝐴𝑧𝐵 ) ↔ ( [ 𝑦 / 𝑥 ] 𝑧𝐴[ 𝑦 / 𝑥 ] 𝑧𝐵 ) ) )
7 6 elv ( [ 𝑦 / 𝑥 ] ( 𝑧𝐴𝑧𝐵 ) ↔ ( [ 𝑦 / 𝑥 ] 𝑧𝐴[ 𝑦 / 𝑥 ] 𝑧𝐵 ) )
8 7 albii ( ∀ 𝑧 [ 𝑦 / 𝑥 ] ( 𝑧𝐴𝑧𝐵 ) ↔ ∀ 𝑧 ( [ 𝑦 / 𝑥 ] 𝑧𝐴[ 𝑦 / 𝑥 ] 𝑧𝐵 ) )
9 sbcel2 ( [ 𝑦 / 𝑥 ] 𝑧𝐴𝑧 𝑦 / 𝑥 𝐴 )
10 sbcel2 ( [ 𝑦 / 𝑥 ] 𝑧𝐵𝑧 𝑦 / 𝑥 𝐵 )
11 9 10 bibi12i ( ( [ 𝑦 / 𝑥 ] 𝑧𝐴[ 𝑦 / 𝑥 ] 𝑧𝐵 ) ↔ ( 𝑧 𝑦 / 𝑥 𝐴𝑧 𝑦 / 𝑥 𝐵 ) )
12 11 albii ( ∀ 𝑧 ( [ 𝑦 / 𝑥 ] 𝑧𝐴[ 𝑦 / 𝑥 ] 𝑧𝐵 ) ↔ ∀ 𝑧 ( 𝑧 𝑦 / 𝑥 𝐴𝑧 𝑦 / 𝑥 𝐵 ) )
13 5 8 12 3bitri ( [ 𝑦 / 𝑥 ] 𝐴 = 𝐵 ↔ ∀ 𝑧 ( 𝑧 𝑦 / 𝑥 𝐴𝑧 𝑦 / 𝑥 𝐵 ) )
14 dfcleq ( 𝑦 / 𝑥 𝐴 = 𝑦 / 𝑥 𝐵 ↔ ∀ 𝑧 ( 𝑧 𝑦 / 𝑥 𝐴𝑧 𝑦 / 𝑥 𝐵 ) )
15 13 14 bitr4i ( [ 𝑦 / 𝑥 ] 𝐴 = 𝐵 𝑦 / 𝑥 𝐴 = 𝑦 / 𝑥 𝐵 )