| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dfcleq |
⊢ ( 𝐴 = 𝐵 ↔ ∀ 𝑧 ( 𝑧 ∈ 𝐴 ↔ 𝑧 ∈ 𝐵 ) ) |
| 2 |
1
|
sbbii |
⊢ ( [ 𝑦 / 𝑥 ] 𝐴 = 𝐵 ↔ [ 𝑦 / 𝑥 ] ∀ 𝑧 ( 𝑧 ∈ 𝐴 ↔ 𝑧 ∈ 𝐵 ) ) |
| 3 |
|
sbsbc |
⊢ ( [ 𝑦 / 𝑥 ] ∀ 𝑧 ( 𝑧 ∈ 𝐴 ↔ 𝑧 ∈ 𝐵 ) ↔ [ 𝑦 / 𝑥 ] ∀ 𝑧 ( 𝑧 ∈ 𝐴 ↔ 𝑧 ∈ 𝐵 ) ) |
| 4 |
|
sbcal |
⊢ ( [ 𝑦 / 𝑥 ] ∀ 𝑧 ( 𝑧 ∈ 𝐴 ↔ 𝑧 ∈ 𝐵 ) ↔ ∀ 𝑧 [ 𝑦 / 𝑥 ] ( 𝑧 ∈ 𝐴 ↔ 𝑧 ∈ 𝐵 ) ) |
| 5 |
2 3 4
|
3bitri |
⊢ ( [ 𝑦 / 𝑥 ] 𝐴 = 𝐵 ↔ ∀ 𝑧 [ 𝑦 / 𝑥 ] ( 𝑧 ∈ 𝐴 ↔ 𝑧 ∈ 𝐵 ) ) |
| 6 |
|
sbcbig |
⊢ ( 𝑦 ∈ V → ( [ 𝑦 / 𝑥 ] ( 𝑧 ∈ 𝐴 ↔ 𝑧 ∈ 𝐵 ) ↔ ( [ 𝑦 / 𝑥 ] 𝑧 ∈ 𝐴 ↔ [ 𝑦 / 𝑥 ] 𝑧 ∈ 𝐵 ) ) ) |
| 7 |
6
|
elv |
⊢ ( [ 𝑦 / 𝑥 ] ( 𝑧 ∈ 𝐴 ↔ 𝑧 ∈ 𝐵 ) ↔ ( [ 𝑦 / 𝑥 ] 𝑧 ∈ 𝐴 ↔ [ 𝑦 / 𝑥 ] 𝑧 ∈ 𝐵 ) ) |
| 8 |
7
|
albii |
⊢ ( ∀ 𝑧 [ 𝑦 / 𝑥 ] ( 𝑧 ∈ 𝐴 ↔ 𝑧 ∈ 𝐵 ) ↔ ∀ 𝑧 ( [ 𝑦 / 𝑥 ] 𝑧 ∈ 𝐴 ↔ [ 𝑦 / 𝑥 ] 𝑧 ∈ 𝐵 ) ) |
| 9 |
|
sbcel2 |
⊢ ( [ 𝑦 / 𝑥 ] 𝑧 ∈ 𝐴 ↔ 𝑧 ∈ ⦋ 𝑦 / 𝑥 ⦌ 𝐴 ) |
| 10 |
|
sbcel2 |
⊢ ( [ 𝑦 / 𝑥 ] 𝑧 ∈ 𝐵 ↔ 𝑧 ∈ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) |
| 11 |
9 10
|
bibi12i |
⊢ ( ( [ 𝑦 / 𝑥 ] 𝑧 ∈ 𝐴 ↔ [ 𝑦 / 𝑥 ] 𝑧 ∈ 𝐵 ) ↔ ( 𝑧 ∈ ⦋ 𝑦 / 𝑥 ⦌ 𝐴 ↔ 𝑧 ∈ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) ) |
| 12 |
11
|
albii |
⊢ ( ∀ 𝑧 ( [ 𝑦 / 𝑥 ] 𝑧 ∈ 𝐴 ↔ [ 𝑦 / 𝑥 ] 𝑧 ∈ 𝐵 ) ↔ ∀ 𝑧 ( 𝑧 ∈ ⦋ 𝑦 / 𝑥 ⦌ 𝐴 ↔ 𝑧 ∈ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) ) |
| 13 |
5 8 12
|
3bitri |
⊢ ( [ 𝑦 / 𝑥 ] 𝐴 = 𝐵 ↔ ∀ 𝑧 ( 𝑧 ∈ ⦋ 𝑦 / 𝑥 ⦌ 𝐴 ↔ 𝑧 ∈ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) ) |
| 14 |
|
dfcleq |
⊢ ( ⦋ 𝑦 / 𝑥 ⦌ 𝐴 = ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ↔ ∀ 𝑧 ( 𝑧 ∈ ⦋ 𝑦 / 𝑥 ⦌ 𝐴 ↔ 𝑧 ∈ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) ) |
| 15 |
13 14
|
bitr4i |
⊢ ( [ 𝑦 / 𝑥 ] 𝐴 = 𝐵 ↔ ⦋ 𝑦 / 𝑥 ⦌ 𝐴 = ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) |