Metamath Proof Explorer


Theorem bj-sbeq

Description: Distribute proper substitution through an equality relation. (See sbceqg ). (Contributed by BJ, 6-Oct-2018)

Ref Expression
Assertion bj-sbeq y x A = B y / x A = y / x B

Proof

Step Hyp Ref Expression
1 dfcleq A = B z z A z B
2 1 sbbii y x A = B y x z z A z B
3 sbsbc y x z z A z B [˙y / x]˙ z z A z B
4 sbcal [˙y / x]˙ z z A z B z [˙y / x]˙ z A z B
5 2 3 4 3bitri y x A = B z [˙y / x]˙ z A z B
6 sbcbig y V [˙y / x]˙ z A z B [˙y / x]˙ z A [˙y / x]˙ z B
7 6 elv [˙y / x]˙ z A z B [˙y / x]˙ z A [˙y / x]˙ z B
8 7 albii z [˙y / x]˙ z A z B z [˙y / x]˙ z A [˙y / x]˙ z B
9 sbcel2 [˙y / x]˙ z A z y / x A
10 sbcel2 [˙y / x]˙ z B z y / x B
11 9 10 bibi12i [˙y / x]˙ z A [˙y / x]˙ z B z y / x A z y / x B
12 11 albii z [˙y / x]˙ z A [˙y / x]˙ z B z z y / x A z y / x B
13 5 8 12 3bitri y x A = B z z y / x A z y / x B
14 dfcleq y / x A = y / x B z z y / x A z y / x B
15 13 14 bitr4i y x A = B y / x A = y / x B