| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dfcleq | ⊢ ( 𝐵  =  𝐶  ↔  ∀ 𝑦 ( 𝑦  ∈  𝐵  ↔  𝑦  ∈  𝐶 ) ) | 
						
							| 2 | 1 | sbcth | ⊢ ( 𝐴  ∈  𝑉  →  [ 𝐴  /  𝑥 ] ( 𝐵  =  𝐶  ↔  ∀ 𝑦 ( 𝑦  ∈  𝐵  ↔  𝑦  ∈  𝐶 ) ) ) | 
						
							| 3 |  | sbcbig | ⊢ ( 𝐴  ∈  𝑉  →  ( [ 𝐴  /  𝑥 ] ( 𝐵  =  𝐶  ↔  ∀ 𝑦 ( 𝑦  ∈  𝐵  ↔  𝑦  ∈  𝐶 ) )  ↔  ( [ 𝐴  /  𝑥 ] 𝐵  =  𝐶  ↔  [ 𝐴  /  𝑥 ] ∀ 𝑦 ( 𝑦  ∈  𝐵  ↔  𝑦  ∈  𝐶 ) ) ) ) | 
						
							| 4 | 2 3 | mpbid | ⊢ ( 𝐴  ∈  𝑉  →  ( [ 𝐴  /  𝑥 ] 𝐵  =  𝐶  ↔  [ 𝐴  /  𝑥 ] ∀ 𝑦 ( 𝑦  ∈  𝐵  ↔  𝑦  ∈  𝐶 ) ) ) | 
						
							| 5 |  | sbcal | ⊢ ( [ 𝐴  /  𝑥 ] ∀ 𝑦 ( 𝑦  ∈  𝐵  ↔  𝑦  ∈  𝐶 )  ↔  ∀ 𝑦 [ 𝐴  /  𝑥 ] ( 𝑦  ∈  𝐵  ↔  𝑦  ∈  𝐶 ) ) | 
						
							| 6 | 4 5 | bitrdi | ⊢ ( 𝐴  ∈  𝑉  →  ( [ 𝐴  /  𝑥 ] 𝐵  =  𝐶  ↔  ∀ 𝑦 [ 𝐴  /  𝑥 ] ( 𝑦  ∈  𝐵  ↔  𝑦  ∈  𝐶 ) ) ) | 
						
							| 7 |  | sbcbig | ⊢ ( 𝐴  ∈  𝑉  →  ( [ 𝐴  /  𝑥 ] ( 𝑦  ∈  𝐵  ↔  𝑦  ∈  𝐶 )  ↔  ( [ 𝐴  /  𝑥 ] 𝑦  ∈  𝐵  ↔  [ 𝐴  /  𝑥 ] 𝑦  ∈  𝐶 ) ) ) | 
						
							| 8 | 7 | albidv | ⊢ ( 𝐴  ∈  𝑉  →  ( ∀ 𝑦 [ 𝐴  /  𝑥 ] ( 𝑦  ∈  𝐵  ↔  𝑦  ∈  𝐶 )  ↔  ∀ 𝑦 ( [ 𝐴  /  𝑥 ] 𝑦  ∈  𝐵  ↔  [ 𝐴  /  𝑥 ] 𝑦  ∈  𝐶 ) ) ) | 
						
							| 9 |  | sbcel2 | ⊢ ( [ 𝐴  /  𝑥 ] 𝑦  ∈  𝐵  ↔  𝑦  ∈  ⦋ 𝐴  /  𝑥 ⦌ 𝐵 ) | 
						
							| 10 | 9 | a1i | ⊢ ( 𝐴  ∈  𝑉  →  ( [ 𝐴  /  𝑥 ] 𝑦  ∈  𝐵  ↔  𝑦  ∈  ⦋ 𝐴  /  𝑥 ⦌ 𝐵 ) ) | 
						
							| 11 |  | sbcel2 | ⊢ ( [ 𝐴  /  𝑥 ] 𝑦  ∈  𝐶  ↔  𝑦  ∈  ⦋ 𝐴  /  𝑥 ⦌ 𝐶 ) | 
						
							| 12 | 11 | a1i | ⊢ ( 𝐴  ∈  𝑉  →  ( [ 𝐴  /  𝑥 ] 𝑦  ∈  𝐶  ↔  𝑦  ∈  ⦋ 𝐴  /  𝑥 ⦌ 𝐶 ) ) | 
						
							| 13 | 10 12 | bibi12d | ⊢ ( 𝐴  ∈  𝑉  →  ( ( [ 𝐴  /  𝑥 ] 𝑦  ∈  𝐵  ↔  [ 𝐴  /  𝑥 ] 𝑦  ∈  𝐶 )  ↔  ( 𝑦  ∈  ⦋ 𝐴  /  𝑥 ⦌ 𝐵  ↔  𝑦  ∈  ⦋ 𝐴  /  𝑥 ⦌ 𝐶 ) ) ) | 
						
							| 14 | 13 | albidv | ⊢ ( 𝐴  ∈  𝑉  →  ( ∀ 𝑦 ( [ 𝐴  /  𝑥 ] 𝑦  ∈  𝐵  ↔  [ 𝐴  /  𝑥 ] 𝑦  ∈  𝐶 )  ↔  ∀ 𝑦 ( 𝑦  ∈  ⦋ 𝐴  /  𝑥 ⦌ 𝐵  ↔  𝑦  ∈  ⦋ 𝐴  /  𝑥 ⦌ 𝐶 ) ) ) | 
						
							| 15 | 6 8 14 | 3bitrd | ⊢ ( 𝐴  ∈  𝑉  →  ( [ 𝐴  /  𝑥 ] 𝐵  =  𝐶  ↔  ∀ 𝑦 ( 𝑦  ∈  ⦋ 𝐴  /  𝑥 ⦌ 𝐵  ↔  𝑦  ∈  ⦋ 𝐴  /  𝑥 ⦌ 𝐶 ) ) ) | 
						
							| 16 |  | dfcleq | ⊢ ( ⦋ 𝐴  /  𝑥 ⦌ 𝐵  =  ⦋ 𝐴  /  𝑥 ⦌ 𝐶  ↔  ∀ 𝑦 ( 𝑦  ∈  ⦋ 𝐴  /  𝑥 ⦌ 𝐵  ↔  𝑦  ∈  ⦋ 𝐴  /  𝑥 ⦌ 𝐶 ) ) | 
						
							| 17 | 15 16 | bitr4di | ⊢ ( 𝐴  ∈  𝑉  →  ( [ 𝐴  /  𝑥 ] 𝐵  =  𝐶  ↔  ⦋ 𝐴  /  𝑥 ⦌ 𝐵  =  ⦋ 𝐴  /  𝑥 ⦌ 𝐶 ) ) |