Description: Version of sbft using F// , proved from core axioms. (Contributed by BJ, 19-Nov-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | bj-sbft | |- ( F// x ph -> ( [ t / x ] ph <-> ph ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | spsbe | |- ( [ t / x ] ph -> E. x ph ) | |
| 2 | bj-nnfe | |- ( F// x ph -> ( E. x ph -> ph ) ) | |
| 3 | 1 2 | syl5 | |- ( F// x ph -> ( [ t / x ] ph -> ph ) ) | 
| 4 | bj-nnfa | |- ( F// x ph -> ( ph -> A. x ph ) ) | |
| 5 | stdpc4 | |- ( A. x ph -> [ t / x ] ph ) | |
| 6 | 4 5 | syl6 | |- ( F// x ph -> ( ph -> [ t / x ] ph ) ) | 
| 7 | 3 6 | impbid | |- ( F// x ph -> ( [ t / x ] ph <-> ph ) ) |