| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ax6ev |  |-  E. x x = y | 
						
							| 2 |  | exim |  |-  ( A. x ( x = y -> ( ph -> ps ) ) -> ( E. x x = y -> E. x ( ph -> ps ) ) ) | 
						
							| 3 | 1 2 | mpi |  |-  ( A. x ( x = y -> ( ph -> ps ) ) -> E. x ( ph -> ps ) ) | 
						
							| 4 |  | 19.35 |  |-  ( E. x ( ph -> ps ) <-> ( A. x ph -> E. x ps ) ) | 
						
							| 5 | 3 4 | sylib |  |-  ( A. x ( x = y -> ( ph -> ps ) ) -> ( A. x ph -> E. x ps ) ) | 
						
							| 6 |  | 19.9t |  |-  ( F/ x ps -> ( E. x ps <-> ps ) ) | 
						
							| 7 | 6 | biimpd |  |-  ( F/ x ps -> ( E. x ps -> ps ) ) | 
						
							| 8 | 5 7 | sylan9r |  |-  ( ( F/ x ps /\ A. x ( x = y -> ( ph -> ps ) ) ) -> ( A. x ph -> ps ) ) |