Metamath Proof Explorer


Theorem spimt

Description: Closed theorem form of spim . (Contributed by NM, 15-Jan-2008) (Revised by Mario Carneiro, 17-Oct-2016) (Proof shortened by Wolf Lammen, 21-Mar-2023) Usage of this theorem is discouraged because it depends on ax-13 . (New usage is discouraged.)

Ref Expression
Assertion spimt
|- ( ( F/ x ps /\ A. x ( x = y -> ( ph -> ps ) ) ) -> ( A. x ph -> ps ) )

Proof

Step Hyp Ref Expression
1 ax6e
 |-  E. x x = y
2 exim
 |-  ( A. x ( x = y -> ( ph -> ps ) ) -> ( E. x x = y -> E. x ( ph -> ps ) ) )
3 1 2 mpi
 |-  ( A. x ( x = y -> ( ph -> ps ) ) -> E. x ( ph -> ps ) )
4 19.35
 |-  ( E. x ( ph -> ps ) <-> ( A. x ph -> E. x ps ) )
5 3 4 sylib
 |-  ( A. x ( x = y -> ( ph -> ps ) ) -> ( A. x ph -> E. x ps ) )
6 id
 |-  ( F/ x ps -> F/ x ps )
7 6 19.9d
 |-  ( F/ x ps -> ( E. x ps -> ps ) )
8 5 7 sylan9r
 |-  ( ( F/ x ps /\ A. x ( x = y -> ( ph -> ps ) ) ) -> ( A. x ph -> ps ) )