Step |
Hyp |
Ref |
Expression |
1 |
|
bj-ax12 |
|- A. x ( x = y -> ( ph -> A. x ( x = y -> ph ) ) ) |
2 |
|
pm3.31 |
|- ( ( x = y -> ( ph -> A. x ( x = y -> ph ) ) ) -> ( ( x = y /\ ph ) -> A. x ( x = y -> ph ) ) ) |
3 |
2
|
aleximi |
|- ( A. x ( x = y -> ( ph -> A. x ( x = y -> ph ) ) ) -> ( E. x ( x = y /\ ph ) -> E. x A. x ( x = y -> ph ) ) ) |
4 |
1 3
|
ax-mp |
|- ( E. x ( x = y /\ ph ) -> E. x A. x ( x = y -> ph ) ) |
5 |
|
hbe1a |
|- ( E. x A. x ( x = y -> ph ) -> A. x ( x = y -> ph ) ) |
6 |
4 5
|
syl |
|- ( E. x ( x = y /\ ph ) -> A. x ( x = y -> ph ) ) |
7 |
|
equs4v |
|- ( A. x ( x = y -> ph ) -> E. x ( x = y /\ ph ) ) |
8 |
6 7
|
impbii |
|- ( E. x ( x = y /\ ph ) <-> A. x ( x = y -> ph ) ) |