Metamath Proof Explorer


Theorem bj-vtoclf

Description: Remove dependency on ax-ext , df-clab and df-cleq (and df-sb and df-v ) from vtoclf . (Contributed by BJ, 6-Oct-2019) (Proof modification is discouraged.)

Ref Expression
Hypotheses bj-vtoclf.nf
|- F/ x ps
bj-vtoclf.s
|- A e. V
bj-vtoclf.maj
|- ( x = A -> ( ph <-> ps ) )
bj-vtoclf.min
|- ph
Assertion bj-vtoclf
|- ps

Proof

Step Hyp Ref Expression
1 bj-vtoclf.nf
 |-  F/ x ps
2 bj-vtoclf.s
 |-  A e. V
3 bj-vtoclf.maj
 |-  ( x = A -> ( ph <-> ps ) )
4 bj-vtoclf.min
 |-  ph
5 2 bj-issetiv
 |-  E. x x = A
6 3 biimpd
 |-  ( x = A -> ( ph -> ps ) )
7 5 6 eximii
 |-  E. x ( ph -> ps )
8 1 7 19.36i
 |-  ( A. x ph -> ps )
9 8 4 mpg
 |-  ps