Metamath Proof Explorer


Theorem bj-vtoclg1f1

Description: The FOL content of vtoclg1f (hence not using ax-ext , df-cleq , df-nfc , df-v ). Note the weakened "major" hypothesis and the disjoint variable condition between x and A (needed since the nonfreeness quantifier for classes is not available without ax-ext ; as a byproduct, this dispenses with ax-11 and ax-13 ). (Contributed by BJ, 30-Apr-2019) (Proof modification is discouraged.)

Ref Expression
Hypotheses bj-vtoclg1f1.nf
|- F/ x ps
bj-vtoclg1f1.maj
|- ( x = A -> ( ph -> ps ) )
bj-vtoclg1f1.min
|- ph
Assertion bj-vtoclg1f1
|- ( E. y y = A -> ps )

Proof

Step Hyp Ref Expression
1 bj-vtoclg1f1.nf
 |-  F/ x ps
2 bj-vtoclg1f1.maj
 |-  ( x = A -> ( ph -> ps ) )
3 bj-vtoclg1f1.min
 |-  ph
4 bj-denotes
 |-  ( E. y y = A <-> E. x x = A )
5 1 2 3 bj-exlimmpi
 |-  ( E. x x = A -> ps )
6 4 5 sylbi
 |-  ( E. y y = A -> ps )