| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nnne0 |
|- ( N e. NN -> N =/= 0 ) |
| 2 |
|
blenn0 |
|- ( ( N e. NN /\ N =/= 0 ) -> ( #b ` N ) = ( ( |_ ` ( 2 logb ( abs ` N ) ) ) + 1 ) ) |
| 3 |
1 2
|
mpdan |
|- ( N e. NN -> ( #b ` N ) = ( ( |_ ` ( 2 logb ( abs ` N ) ) ) + 1 ) ) |
| 4 |
|
nnre |
|- ( N e. NN -> N e. RR ) |
| 5 |
|
nnnn0 |
|- ( N e. NN -> N e. NN0 ) |
| 6 |
5
|
nn0ge0d |
|- ( N e. NN -> 0 <_ N ) |
| 7 |
4 6
|
absidd |
|- ( N e. NN -> ( abs ` N ) = N ) |
| 8 |
7
|
oveq2d |
|- ( N e. NN -> ( 2 logb ( abs ` N ) ) = ( 2 logb N ) ) |
| 9 |
8
|
fveq2d |
|- ( N e. NN -> ( |_ ` ( 2 logb ( abs ` N ) ) ) = ( |_ ` ( 2 logb N ) ) ) |
| 10 |
9
|
oveq1d |
|- ( N e. NN -> ( ( |_ ` ( 2 logb ( abs ` N ) ) ) + 1 ) = ( ( |_ ` ( 2 logb N ) ) + 1 ) ) |
| 11 |
3 10
|
eqtrd |
|- ( N e. NN -> ( #b ` N ) = ( ( |_ ` ( 2 logb N ) ) + 1 ) ) |