| Step |
Hyp |
Ref |
Expression |
| 1 |
|
blennn |
|- ( N e. NN -> ( #b ` N ) = ( ( |_ ` ( 2 logb N ) ) + 1 ) ) |
| 2 |
|
2rp |
|- 2 e. RR+ |
| 3 |
2
|
a1i |
|- ( N e. NN -> 2 e. RR+ ) |
| 4 |
|
nnrp |
|- ( N e. NN -> N e. RR+ ) |
| 5 |
|
1ne2 |
|- 1 =/= 2 |
| 6 |
5
|
necomi |
|- 2 =/= 1 |
| 7 |
6
|
a1i |
|- ( N e. NN -> 2 =/= 1 ) |
| 8 |
|
relogbcl |
|- ( ( 2 e. RR+ /\ N e. RR+ /\ 2 =/= 1 ) -> ( 2 logb N ) e. RR ) |
| 9 |
3 4 7 8
|
syl3anc |
|- ( N e. NN -> ( 2 logb N ) e. RR ) |
| 10 |
|
2z |
|- 2 e. ZZ |
| 11 |
|
uzid |
|- ( 2 e. ZZ -> 2 e. ( ZZ>= ` 2 ) ) |
| 12 |
10 11
|
mp1i |
|- ( N e. NN -> 2 e. ( ZZ>= ` 2 ) ) |
| 13 |
|
nnre |
|- ( N e. NN -> N e. RR ) |
| 14 |
|
nnge1 |
|- ( N e. NN -> 1 <_ N ) |
| 15 |
|
1re |
|- 1 e. RR |
| 16 |
|
elicopnf |
|- ( 1 e. RR -> ( N e. ( 1 [,) +oo ) <-> ( N e. RR /\ 1 <_ N ) ) ) |
| 17 |
15 16
|
ax-mp |
|- ( N e. ( 1 [,) +oo ) <-> ( N e. RR /\ 1 <_ N ) ) |
| 18 |
13 14 17
|
sylanbrc |
|- ( N e. NN -> N e. ( 1 [,) +oo ) ) |
| 19 |
|
rege1logbzge0 |
|- ( ( 2 e. ( ZZ>= ` 2 ) /\ N e. ( 1 [,) +oo ) ) -> 0 <_ ( 2 logb N ) ) |
| 20 |
12 18 19
|
syl2anc |
|- ( N e. NN -> 0 <_ ( 2 logb N ) ) |
| 21 |
|
flge0nn0 |
|- ( ( ( 2 logb N ) e. RR /\ 0 <_ ( 2 logb N ) ) -> ( |_ ` ( 2 logb N ) ) e. NN0 ) |
| 22 |
9 20 21
|
syl2anc |
|- ( N e. NN -> ( |_ ` ( 2 logb N ) ) e. NN0 ) |
| 23 |
|
nn0p1nn |
|- ( ( |_ ` ( 2 logb N ) ) e. NN0 -> ( ( |_ ` ( 2 logb N ) ) + 1 ) e. NN ) |
| 24 |
22 23
|
syl |
|- ( N e. NN -> ( ( |_ ` ( 2 logb N ) ) + 1 ) e. NN ) |
| 25 |
1 24
|
eqeltrd |
|- ( N e. NN -> ( #b ` N ) e. NN ) |