Step |
Hyp |
Ref |
Expression |
1 |
|
blennn |
⊢ ( 𝑁 ∈ ℕ → ( #b ‘ 𝑁 ) = ( ( ⌊ ‘ ( 2 logb 𝑁 ) ) + 1 ) ) |
2 |
|
2rp |
⊢ 2 ∈ ℝ+ |
3 |
2
|
a1i |
⊢ ( 𝑁 ∈ ℕ → 2 ∈ ℝ+ ) |
4 |
|
nnrp |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℝ+ ) |
5 |
|
1ne2 |
⊢ 1 ≠ 2 |
6 |
5
|
necomi |
⊢ 2 ≠ 1 |
7 |
6
|
a1i |
⊢ ( 𝑁 ∈ ℕ → 2 ≠ 1 ) |
8 |
|
relogbcl |
⊢ ( ( 2 ∈ ℝ+ ∧ 𝑁 ∈ ℝ+ ∧ 2 ≠ 1 ) → ( 2 logb 𝑁 ) ∈ ℝ ) |
9 |
3 4 7 8
|
syl3anc |
⊢ ( 𝑁 ∈ ℕ → ( 2 logb 𝑁 ) ∈ ℝ ) |
10 |
|
2z |
⊢ 2 ∈ ℤ |
11 |
|
uzid |
⊢ ( 2 ∈ ℤ → 2 ∈ ( ℤ≥ ‘ 2 ) ) |
12 |
10 11
|
mp1i |
⊢ ( 𝑁 ∈ ℕ → 2 ∈ ( ℤ≥ ‘ 2 ) ) |
13 |
|
nnre |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℝ ) |
14 |
|
nnge1 |
⊢ ( 𝑁 ∈ ℕ → 1 ≤ 𝑁 ) |
15 |
|
1re |
⊢ 1 ∈ ℝ |
16 |
|
elicopnf |
⊢ ( 1 ∈ ℝ → ( 𝑁 ∈ ( 1 [,) +∞ ) ↔ ( 𝑁 ∈ ℝ ∧ 1 ≤ 𝑁 ) ) ) |
17 |
15 16
|
ax-mp |
⊢ ( 𝑁 ∈ ( 1 [,) +∞ ) ↔ ( 𝑁 ∈ ℝ ∧ 1 ≤ 𝑁 ) ) |
18 |
13 14 17
|
sylanbrc |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ( 1 [,) +∞ ) ) |
19 |
|
rege1logbzge0 |
⊢ ( ( 2 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑁 ∈ ( 1 [,) +∞ ) ) → 0 ≤ ( 2 logb 𝑁 ) ) |
20 |
12 18 19
|
syl2anc |
⊢ ( 𝑁 ∈ ℕ → 0 ≤ ( 2 logb 𝑁 ) ) |
21 |
|
flge0nn0 |
⊢ ( ( ( 2 logb 𝑁 ) ∈ ℝ ∧ 0 ≤ ( 2 logb 𝑁 ) ) → ( ⌊ ‘ ( 2 logb 𝑁 ) ) ∈ ℕ0 ) |
22 |
9 20 21
|
syl2anc |
⊢ ( 𝑁 ∈ ℕ → ( ⌊ ‘ ( 2 logb 𝑁 ) ) ∈ ℕ0 ) |
23 |
|
nn0p1nn |
⊢ ( ( ⌊ ‘ ( 2 logb 𝑁 ) ) ∈ ℕ0 → ( ( ⌊ ‘ ( 2 logb 𝑁 ) ) + 1 ) ∈ ℕ ) |
24 |
22 23
|
syl |
⊢ ( 𝑁 ∈ ℕ → ( ( ⌊ ‘ ( 2 logb 𝑁 ) ) + 1 ) ∈ ℕ ) |
25 |
1 24
|
eqeltrd |
⊢ ( 𝑁 ∈ ℕ → ( #b ‘ 𝑁 ) ∈ ℕ ) |