| Step | Hyp | Ref | Expression | 
						
							| 1 |  | zre | ⊢ ( 𝐵  ∈  ℤ  →  𝐵  ∈  ℝ ) | 
						
							| 2 | 1 | 3ad2ant2 | ⊢ ( ( 2  ∈  ℤ  ∧  𝐵  ∈  ℤ  ∧  2  ≤  𝐵 )  →  𝐵  ∈  ℝ ) | 
						
							| 3 |  | 1lt2 | ⊢ 1  <  2 | 
						
							| 4 |  | 1re | ⊢ 1  ∈  ℝ | 
						
							| 5 | 4 | a1i | ⊢ ( ( 2  ∈  ℤ  ∧  𝐵  ∈  ℤ )  →  1  ∈  ℝ ) | 
						
							| 6 |  | 2re | ⊢ 2  ∈  ℝ | 
						
							| 7 | 6 | a1i | ⊢ ( ( 2  ∈  ℤ  ∧  𝐵  ∈  ℤ )  →  2  ∈  ℝ ) | 
						
							| 8 | 1 | adantl | ⊢ ( ( 2  ∈  ℤ  ∧  𝐵  ∈  ℤ )  →  𝐵  ∈  ℝ ) | 
						
							| 9 |  | ltletr | ⊢ ( ( 1  ∈  ℝ  ∧  2  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  ( ( 1  <  2  ∧  2  ≤  𝐵 )  →  1  <  𝐵 ) ) | 
						
							| 10 | 5 7 8 9 | syl3anc | ⊢ ( ( 2  ∈  ℤ  ∧  𝐵  ∈  ℤ )  →  ( ( 1  <  2  ∧  2  ≤  𝐵 )  →  1  <  𝐵 ) ) | 
						
							| 11 | 3 10 | mpani | ⊢ ( ( 2  ∈  ℤ  ∧  𝐵  ∈  ℤ )  →  ( 2  ≤  𝐵  →  1  <  𝐵 ) ) | 
						
							| 12 | 11 | 3impia | ⊢ ( ( 2  ∈  ℤ  ∧  𝐵  ∈  ℤ  ∧  2  ≤  𝐵 )  →  1  <  𝐵 ) | 
						
							| 13 | 2 12 | jca | ⊢ ( ( 2  ∈  ℤ  ∧  𝐵  ∈  ℤ  ∧  2  ≤  𝐵 )  →  ( 𝐵  ∈  ℝ  ∧  1  <  𝐵 ) ) | 
						
							| 14 |  | eluz2 | ⊢ ( 𝐵  ∈  ( ℤ≥ ‘ 2 )  ↔  ( 2  ∈  ℤ  ∧  𝐵  ∈  ℤ  ∧  2  ≤  𝐵 ) ) | 
						
							| 15 |  | 1xr | ⊢ 1  ∈  ℝ* | 
						
							| 16 |  | elioopnf | ⊢ ( 1  ∈  ℝ*  →  ( 𝐵  ∈  ( 1 (,) +∞ )  ↔  ( 𝐵  ∈  ℝ  ∧  1  <  𝐵 ) ) ) | 
						
							| 17 | 15 16 | ax-mp | ⊢ ( 𝐵  ∈  ( 1 (,) +∞ )  ↔  ( 𝐵  ∈  ℝ  ∧  1  <  𝐵 ) ) | 
						
							| 18 | 13 14 17 | 3imtr4i | ⊢ ( 𝐵  ∈  ( ℤ≥ ‘ 2 )  →  𝐵  ∈  ( 1 (,) +∞ ) ) | 
						
							| 19 |  | rege1logbrege0 | ⊢ ( ( 𝐵  ∈  ( 1 (,) +∞ )  ∧  𝑋  ∈  ( 1 [,) +∞ ) )  →  0  ≤  ( 𝐵  logb  𝑋 ) ) | 
						
							| 20 | 18 19 | sylan | ⊢ ( ( 𝐵  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑋  ∈  ( 1 [,) +∞ ) )  →  0  ≤  ( 𝐵  logb  𝑋 ) ) |