| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 1re | ⊢ 1  ∈  ℝ | 
						
							| 2 |  | elicopnf | ⊢ ( 1  ∈  ℝ  →  ( 𝑋  ∈  ( 1 [,) +∞ )  ↔  ( 𝑋  ∈  ℝ  ∧  1  ≤  𝑋 ) ) ) | 
						
							| 3 | 1 2 | ax-mp | ⊢ ( 𝑋  ∈  ( 1 [,) +∞ )  ↔  ( 𝑋  ∈  ℝ  ∧  1  ≤  𝑋 ) ) | 
						
							| 4 |  | id | ⊢ ( ( 𝑋  ∈  ℝ  ∧  1  ≤  𝑋 )  →  ( 𝑋  ∈  ℝ  ∧  1  ≤  𝑋 ) ) | 
						
							| 5 | 3 4 | sylbi | ⊢ ( 𝑋  ∈  ( 1 [,) +∞ )  →  ( 𝑋  ∈  ℝ  ∧  1  ≤  𝑋 ) ) | 
						
							| 6 | 5 | adantl | ⊢ ( ( 𝐵  ∈  ( 1 (,) +∞ )  ∧  𝑋  ∈  ( 1 [,) +∞ ) )  →  ( 𝑋  ∈  ℝ  ∧  1  ≤  𝑋 ) ) | 
						
							| 7 |  | logge0 | ⊢ ( ( 𝑋  ∈  ℝ  ∧  1  ≤  𝑋 )  →  0  ≤  ( log ‘ 𝑋 ) ) | 
						
							| 8 | 6 7 | syl | ⊢ ( ( 𝐵  ∈  ( 1 (,) +∞ )  ∧  𝑋  ∈  ( 1 [,) +∞ ) )  →  0  ≤  ( log ‘ 𝑋 ) ) | 
						
							| 9 |  | simpl | ⊢ ( ( 𝑋  ∈  ℝ  ∧  1  ≤  𝑋 )  →  𝑋  ∈  ℝ ) | 
						
							| 10 |  | 0lt1 | ⊢ 0  <  1 | 
						
							| 11 |  | 0red | ⊢ ( 𝑋  ∈  ℝ  →  0  ∈  ℝ ) | 
						
							| 12 |  | 1red | ⊢ ( 𝑋  ∈  ℝ  →  1  ∈  ℝ ) | 
						
							| 13 |  | id | ⊢ ( 𝑋  ∈  ℝ  →  𝑋  ∈  ℝ ) | 
						
							| 14 |  | ltletr | ⊢ ( ( 0  ∈  ℝ  ∧  1  ∈  ℝ  ∧  𝑋  ∈  ℝ )  →  ( ( 0  <  1  ∧  1  ≤  𝑋 )  →  0  <  𝑋 ) ) | 
						
							| 15 | 11 12 13 14 | syl3anc | ⊢ ( 𝑋  ∈  ℝ  →  ( ( 0  <  1  ∧  1  ≤  𝑋 )  →  0  <  𝑋 ) ) | 
						
							| 16 | 10 15 | mpani | ⊢ ( 𝑋  ∈  ℝ  →  ( 1  ≤  𝑋  →  0  <  𝑋 ) ) | 
						
							| 17 | 16 | imp | ⊢ ( ( 𝑋  ∈  ℝ  ∧  1  ≤  𝑋 )  →  0  <  𝑋 ) | 
						
							| 18 | 9 17 | elrpd | ⊢ ( ( 𝑋  ∈  ℝ  ∧  1  ≤  𝑋 )  →  𝑋  ∈  ℝ+ ) | 
						
							| 19 | 3 18 | sylbi | ⊢ ( 𝑋  ∈  ( 1 [,) +∞ )  →  𝑋  ∈  ℝ+ ) | 
						
							| 20 | 19 | relogcld | ⊢ ( 𝑋  ∈  ( 1 [,) +∞ )  →  ( log ‘ 𝑋 )  ∈  ℝ ) | 
						
							| 21 | 20 | adantl | ⊢ ( ( 𝐵  ∈  ( 1 (,) +∞ )  ∧  𝑋  ∈  ( 1 [,) +∞ ) )  →  ( log ‘ 𝑋 )  ∈  ℝ ) | 
						
							| 22 |  | 1xr | ⊢ 1  ∈  ℝ* | 
						
							| 23 |  | elioopnf | ⊢ ( 1  ∈  ℝ*  →  ( 𝐵  ∈  ( 1 (,) +∞ )  ↔  ( 𝐵  ∈  ℝ  ∧  1  <  𝐵 ) ) ) | 
						
							| 24 | 22 23 | ax-mp | ⊢ ( 𝐵  ∈  ( 1 (,) +∞ )  ↔  ( 𝐵  ∈  ℝ  ∧  1  <  𝐵 ) ) | 
						
							| 25 |  | simpl | ⊢ ( ( 𝐵  ∈  ℝ  ∧  1  <  𝐵 )  →  𝐵  ∈  ℝ ) | 
						
							| 26 |  | 0red | ⊢ ( 𝐵  ∈  ℝ  →  0  ∈  ℝ ) | 
						
							| 27 |  | 1red | ⊢ ( 𝐵  ∈  ℝ  →  1  ∈  ℝ ) | 
						
							| 28 |  | id | ⊢ ( 𝐵  ∈  ℝ  →  𝐵  ∈  ℝ ) | 
						
							| 29 |  | lttr | ⊢ ( ( 0  ∈  ℝ  ∧  1  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  ( ( 0  <  1  ∧  1  <  𝐵 )  →  0  <  𝐵 ) ) | 
						
							| 30 | 26 27 28 29 | syl3anc | ⊢ ( 𝐵  ∈  ℝ  →  ( ( 0  <  1  ∧  1  <  𝐵 )  →  0  <  𝐵 ) ) | 
						
							| 31 | 10 30 | mpani | ⊢ ( 𝐵  ∈  ℝ  →  ( 1  <  𝐵  →  0  <  𝐵 ) ) | 
						
							| 32 | 31 | imp | ⊢ ( ( 𝐵  ∈  ℝ  ∧  1  <  𝐵 )  →  0  <  𝐵 ) | 
						
							| 33 | 25 32 | elrpd | ⊢ ( ( 𝐵  ∈  ℝ  ∧  1  <  𝐵 )  →  𝐵  ∈  ℝ+ ) | 
						
							| 34 | 24 33 | sylbi | ⊢ ( 𝐵  ∈  ( 1 (,) +∞ )  →  𝐵  ∈  ℝ+ ) | 
						
							| 35 | 34 | relogcld | ⊢ ( 𝐵  ∈  ( 1 (,) +∞ )  →  ( log ‘ 𝐵 )  ∈  ℝ ) | 
						
							| 36 | 35 | adantr | ⊢ ( ( 𝐵  ∈  ( 1 (,) +∞ )  ∧  𝑋  ∈  ( 1 [,) +∞ ) )  →  ( log ‘ 𝐵 )  ∈  ℝ ) | 
						
							| 37 |  | regt1loggt0 | ⊢ ( 𝐵  ∈  ( 1 (,) +∞ )  →  0  <  ( log ‘ 𝐵 ) ) | 
						
							| 38 | 37 | adantr | ⊢ ( ( 𝐵  ∈  ( 1 (,) +∞ )  ∧  𝑋  ∈  ( 1 [,) +∞ ) )  →  0  <  ( log ‘ 𝐵 ) ) | 
						
							| 39 |  | ge0div | ⊢ ( ( ( log ‘ 𝑋 )  ∈  ℝ  ∧  ( log ‘ 𝐵 )  ∈  ℝ  ∧  0  <  ( log ‘ 𝐵 ) )  →  ( 0  ≤  ( log ‘ 𝑋 )  ↔  0  ≤  ( ( log ‘ 𝑋 )  /  ( log ‘ 𝐵 ) ) ) ) | 
						
							| 40 | 21 36 38 39 | syl3anc | ⊢ ( ( 𝐵  ∈  ( 1 (,) +∞ )  ∧  𝑋  ∈  ( 1 [,) +∞ ) )  →  ( 0  ≤  ( log ‘ 𝑋 )  ↔  0  ≤  ( ( log ‘ 𝑋 )  /  ( log ‘ 𝐵 ) ) ) ) | 
						
							| 41 | 8 40 | mpbid | ⊢ ( ( 𝐵  ∈  ( 1 (,) +∞ )  ∧  𝑋  ∈  ( 1 [,) +∞ ) )  →  0  ≤  ( ( log ‘ 𝑋 )  /  ( log ‘ 𝐵 ) ) ) | 
						
							| 42 |  | recn | ⊢ ( 𝐵  ∈  ℝ  →  𝐵  ∈  ℂ ) | 
						
							| 43 | 42 | adantr | ⊢ ( ( 𝐵  ∈  ℝ  ∧  1  <  𝐵 )  →  𝐵  ∈  ℂ ) | 
						
							| 44 | 32 | gt0ne0d | ⊢ ( ( 𝐵  ∈  ℝ  ∧  1  <  𝐵 )  →  𝐵  ≠  0 ) | 
						
							| 45 | 27 28 | ltlend | ⊢ ( 𝐵  ∈  ℝ  →  ( 1  <  𝐵  ↔  ( 1  ≤  𝐵  ∧  𝐵  ≠  1 ) ) ) | 
						
							| 46 | 45 | simplbda | ⊢ ( ( 𝐵  ∈  ℝ  ∧  1  <  𝐵 )  →  𝐵  ≠  1 ) | 
						
							| 47 | 43 44 46 | 3jca | ⊢ ( ( 𝐵  ∈  ℝ  ∧  1  <  𝐵 )  →  ( 𝐵  ∈  ℂ  ∧  𝐵  ≠  0  ∧  𝐵  ≠  1 ) ) | 
						
							| 48 |  | eldifpr | ⊢ ( 𝐵  ∈  ( ℂ  ∖  { 0 ,  1 } )  ↔  ( 𝐵  ∈  ℂ  ∧  𝐵  ≠  0  ∧  𝐵  ≠  1 ) ) | 
						
							| 49 | 47 24 48 | 3imtr4i | ⊢ ( 𝐵  ∈  ( 1 (,) +∞ )  →  𝐵  ∈  ( ℂ  ∖  { 0 ,  1 } ) ) | 
						
							| 50 |  | recn | ⊢ ( 𝑋  ∈  ℝ  →  𝑋  ∈  ℂ ) | 
						
							| 51 | 50 | adantr | ⊢ ( ( 𝑋  ∈  ℝ  ∧  1  ≤  𝑋 )  →  𝑋  ∈  ℂ ) | 
						
							| 52 | 17 | gt0ne0d | ⊢ ( ( 𝑋  ∈  ℝ  ∧  1  ≤  𝑋 )  →  𝑋  ≠  0 ) | 
						
							| 53 | 51 52 | jca | ⊢ ( ( 𝑋  ∈  ℝ  ∧  1  ≤  𝑋 )  →  ( 𝑋  ∈  ℂ  ∧  𝑋  ≠  0 ) ) | 
						
							| 54 |  | eldifsn | ⊢ ( 𝑋  ∈  ( ℂ  ∖  { 0 } )  ↔  ( 𝑋  ∈  ℂ  ∧  𝑋  ≠  0 ) ) | 
						
							| 55 | 53 3 54 | 3imtr4i | ⊢ ( 𝑋  ∈  ( 1 [,) +∞ )  →  𝑋  ∈  ( ℂ  ∖  { 0 } ) ) | 
						
							| 56 |  | logbval | ⊢ ( ( 𝐵  ∈  ( ℂ  ∖  { 0 ,  1 } )  ∧  𝑋  ∈  ( ℂ  ∖  { 0 } ) )  →  ( 𝐵  logb  𝑋 )  =  ( ( log ‘ 𝑋 )  /  ( log ‘ 𝐵 ) ) ) | 
						
							| 57 | 49 55 56 | syl2an | ⊢ ( ( 𝐵  ∈  ( 1 (,) +∞ )  ∧  𝑋  ∈  ( 1 [,) +∞ ) )  →  ( 𝐵  logb  𝑋 )  =  ( ( log ‘ 𝑋 )  /  ( log ‘ 𝐵 ) ) ) | 
						
							| 58 | 41 57 | breqtrrd | ⊢ ( ( 𝐵  ∈  ( 1 (,) +∞ )  ∧  𝑋  ∈  ( 1 [,) +∞ ) )  →  0  ≤  ( 𝐵  logb  𝑋 ) ) |