| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elprg |
⊢ ( 𝐴 ∈ 𝐵 → ( 𝐴 ∈ { 𝐶 , 𝐷 } ↔ ( 𝐴 = 𝐶 ∨ 𝐴 = 𝐷 ) ) ) |
| 2 |
1
|
notbid |
⊢ ( 𝐴 ∈ 𝐵 → ( ¬ 𝐴 ∈ { 𝐶 , 𝐷 } ↔ ¬ ( 𝐴 = 𝐶 ∨ 𝐴 = 𝐷 ) ) ) |
| 3 |
|
neanior |
⊢ ( ( 𝐴 ≠ 𝐶 ∧ 𝐴 ≠ 𝐷 ) ↔ ¬ ( 𝐴 = 𝐶 ∨ 𝐴 = 𝐷 ) ) |
| 4 |
2 3
|
bitr4di |
⊢ ( 𝐴 ∈ 𝐵 → ( ¬ 𝐴 ∈ { 𝐶 , 𝐷 } ↔ ( 𝐴 ≠ 𝐶 ∧ 𝐴 ≠ 𝐷 ) ) ) |
| 5 |
4
|
pm5.32i |
⊢ ( ( 𝐴 ∈ 𝐵 ∧ ¬ 𝐴 ∈ { 𝐶 , 𝐷 } ) ↔ ( 𝐴 ∈ 𝐵 ∧ ( 𝐴 ≠ 𝐶 ∧ 𝐴 ≠ 𝐷 ) ) ) |
| 6 |
|
eldif |
⊢ ( 𝐴 ∈ ( 𝐵 ∖ { 𝐶 , 𝐷 } ) ↔ ( 𝐴 ∈ 𝐵 ∧ ¬ 𝐴 ∈ { 𝐶 , 𝐷 } ) ) |
| 7 |
|
3anass |
⊢ ( ( 𝐴 ∈ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐴 ≠ 𝐷 ) ↔ ( 𝐴 ∈ 𝐵 ∧ ( 𝐴 ≠ 𝐶 ∧ 𝐴 ≠ 𝐷 ) ) ) |
| 8 |
5 6 7
|
3bitr4i |
⊢ ( 𝐴 ∈ ( 𝐵 ∖ { 𝐶 , 𝐷 } ) ↔ ( 𝐴 ∈ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐴 ≠ 𝐷 ) ) |