Metamath Proof Explorer


Theorem eldifpr

Description: Membership in a set with two elements removed. Similar to eldifsn and eldiftp . (Contributed by Mario Carneiro, 18-Jul-2017)

Ref Expression
Assertion eldifpr
|- ( A e. ( B \ { C , D } ) <-> ( A e. B /\ A =/= C /\ A =/= D ) )

Proof

Step Hyp Ref Expression
1 elprg
 |-  ( A e. B -> ( A e. { C , D } <-> ( A = C \/ A = D ) ) )
2 1 notbid
 |-  ( A e. B -> ( -. A e. { C , D } <-> -. ( A = C \/ A = D ) ) )
3 neanior
 |-  ( ( A =/= C /\ A =/= D ) <-> -. ( A = C \/ A = D ) )
4 2 3 syl6bbr
 |-  ( A e. B -> ( -. A e. { C , D } <-> ( A =/= C /\ A =/= D ) ) )
5 4 pm5.32i
 |-  ( ( A e. B /\ -. A e. { C , D } ) <-> ( A e. B /\ ( A =/= C /\ A =/= D ) ) )
6 eldif
 |-  ( A e. ( B \ { C , D } ) <-> ( A e. B /\ -. A e. { C , D } ) )
7 3anass
 |-  ( ( A e. B /\ A =/= C /\ A =/= D ) <-> ( A e. B /\ ( A =/= C /\ A =/= D ) ) )
8 5 6 7 3bitr4i
 |-  ( A e. ( B \ { C , D } ) <-> ( A e. B /\ A =/= C /\ A =/= D ) )