| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eldif | ⊢ ( 𝐴  ∈  ( 𝐵  ∖  { 𝐶 ,  𝐷 ,  𝐸 } )  ↔  ( 𝐴  ∈  𝐵  ∧  ¬  𝐴  ∈  { 𝐶 ,  𝐷 ,  𝐸 } ) ) | 
						
							| 2 |  | eltpg | ⊢ ( 𝐴  ∈  𝐵  →  ( 𝐴  ∈  { 𝐶 ,  𝐷 ,  𝐸 }  ↔  ( 𝐴  =  𝐶  ∨  𝐴  =  𝐷  ∨  𝐴  =  𝐸 ) ) ) | 
						
							| 3 | 2 | notbid | ⊢ ( 𝐴  ∈  𝐵  →  ( ¬  𝐴  ∈  { 𝐶 ,  𝐷 ,  𝐸 }  ↔  ¬  ( 𝐴  =  𝐶  ∨  𝐴  =  𝐷  ∨  𝐴  =  𝐸 ) ) ) | 
						
							| 4 |  | ne3anior | ⊢ ( ( 𝐴  ≠  𝐶  ∧  𝐴  ≠  𝐷  ∧  𝐴  ≠  𝐸 )  ↔  ¬  ( 𝐴  =  𝐶  ∨  𝐴  =  𝐷  ∨  𝐴  =  𝐸 ) ) | 
						
							| 5 | 3 4 | bitr4di | ⊢ ( 𝐴  ∈  𝐵  →  ( ¬  𝐴  ∈  { 𝐶 ,  𝐷 ,  𝐸 }  ↔  ( 𝐴  ≠  𝐶  ∧  𝐴  ≠  𝐷  ∧  𝐴  ≠  𝐸 ) ) ) | 
						
							| 6 | 5 | pm5.32i | ⊢ ( ( 𝐴  ∈  𝐵  ∧  ¬  𝐴  ∈  { 𝐶 ,  𝐷 ,  𝐸 } )  ↔  ( 𝐴  ∈  𝐵  ∧  ( 𝐴  ≠  𝐶  ∧  𝐴  ≠  𝐷  ∧  𝐴  ≠  𝐸 ) ) ) | 
						
							| 7 | 1 6 | bitri | ⊢ ( 𝐴  ∈  ( 𝐵  ∖  { 𝐶 ,  𝐷 ,  𝐸 } )  ↔  ( 𝐴  ∈  𝐵  ∧  ( 𝐴  ≠  𝐶  ∧  𝐴  ≠  𝐷  ∧  𝐴  ≠  𝐸 ) ) ) |