Step |
Hyp |
Ref |
Expression |
1 |
|
elprg |
⊢ ( 𝐴 ∈ 𝑉 → ( 𝐴 ∈ { 𝐵 , 𝐶 } ↔ ( 𝐴 = 𝐵 ∨ 𝐴 = 𝐶 ) ) ) |
2 |
|
elsng |
⊢ ( 𝐴 ∈ 𝑉 → ( 𝐴 ∈ { 𝐷 } ↔ 𝐴 = 𝐷 ) ) |
3 |
1 2
|
orbi12d |
⊢ ( 𝐴 ∈ 𝑉 → ( ( 𝐴 ∈ { 𝐵 , 𝐶 } ∨ 𝐴 ∈ { 𝐷 } ) ↔ ( ( 𝐴 = 𝐵 ∨ 𝐴 = 𝐶 ) ∨ 𝐴 = 𝐷 ) ) ) |
4 |
|
df-tp |
⊢ { 𝐵 , 𝐶 , 𝐷 } = ( { 𝐵 , 𝐶 } ∪ { 𝐷 } ) |
5 |
4
|
eleq2i |
⊢ ( 𝐴 ∈ { 𝐵 , 𝐶 , 𝐷 } ↔ 𝐴 ∈ ( { 𝐵 , 𝐶 } ∪ { 𝐷 } ) ) |
6 |
|
elun |
⊢ ( 𝐴 ∈ ( { 𝐵 , 𝐶 } ∪ { 𝐷 } ) ↔ ( 𝐴 ∈ { 𝐵 , 𝐶 } ∨ 𝐴 ∈ { 𝐷 } ) ) |
7 |
5 6
|
bitri |
⊢ ( 𝐴 ∈ { 𝐵 , 𝐶 , 𝐷 } ↔ ( 𝐴 ∈ { 𝐵 , 𝐶 } ∨ 𝐴 ∈ { 𝐷 } ) ) |
8 |
|
df-3or |
⊢ ( ( 𝐴 = 𝐵 ∨ 𝐴 = 𝐶 ∨ 𝐴 = 𝐷 ) ↔ ( ( 𝐴 = 𝐵 ∨ 𝐴 = 𝐶 ) ∨ 𝐴 = 𝐷 ) ) |
9 |
3 7 8
|
3bitr4g |
⊢ ( 𝐴 ∈ 𝑉 → ( 𝐴 ∈ { 𝐵 , 𝐶 , 𝐷 } ↔ ( 𝐴 = 𝐵 ∨ 𝐴 = 𝐶 ∨ 𝐴 = 𝐷 ) ) ) |