| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 1re |  |-  1 e. RR | 
						
							| 2 |  | elicopnf |  |-  ( 1 e. RR -> ( X e. ( 1 [,) +oo ) <-> ( X e. RR /\ 1 <_ X ) ) ) | 
						
							| 3 | 1 2 | ax-mp |  |-  ( X e. ( 1 [,) +oo ) <-> ( X e. RR /\ 1 <_ X ) ) | 
						
							| 4 |  | id |  |-  ( ( X e. RR /\ 1 <_ X ) -> ( X e. RR /\ 1 <_ X ) ) | 
						
							| 5 | 3 4 | sylbi |  |-  ( X e. ( 1 [,) +oo ) -> ( X e. RR /\ 1 <_ X ) ) | 
						
							| 6 | 5 | adantl |  |-  ( ( B e. ( 1 (,) +oo ) /\ X e. ( 1 [,) +oo ) ) -> ( X e. RR /\ 1 <_ X ) ) | 
						
							| 7 |  | logge0 |  |-  ( ( X e. RR /\ 1 <_ X ) -> 0 <_ ( log ` X ) ) | 
						
							| 8 | 6 7 | syl |  |-  ( ( B e. ( 1 (,) +oo ) /\ X e. ( 1 [,) +oo ) ) -> 0 <_ ( log ` X ) ) | 
						
							| 9 |  | simpl |  |-  ( ( X e. RR /\ 1 <_ X ) -> X e. RR ) | 
						
							| 10 |  | 0lt1 |  |-  0 < 1 | 
						
							| 11 |  | 0red |  |-  ( X e. RR -> 0 e. RR ) | 
						
							| 12 |  | 1red |  |-  ( X e. RR -> 1 e. RR ) | 
						
							| 13 |  | id |  |-  ( X e. RR -> X e. RR ) | 
						
							| 14 |  | ltletr |  |-  ( ( 0 e. RR /\ 1 e. RR /\ X e. RR ) -> ( ( 0 < 1 /\ 1 <_ X ) -> 0 < X ) ) | 
						
							| 15 | 11 12 13 14 | syl3anc |  |-  ( X e. RR -> ( ( 0 < 1 /\ 1 <_ X ) -> 0 < X ) ) | 
						
							| 16 | 10 15 | mpani |  |-  ( X e. RR -> ( 1 <_ X -> 0 < X ) ) | 
						
							| 17 | 16 | imp |  |-  ( ( X e. RR /\ 1 <_ X ) -> 0 < X ) | 
						
							| 18 | 9 17 | elrpd |  |-  ( ( X e. RR /\ 1 <_ X ) -> X e. RR+ ) | 
						
							| 19 | 3 18 | sylbi |  |-  ( X e. ( 1 [,) +oo ) -> X e. RR+ ) | 
						
							| 20 | 19 | relogcld |  |-  ( X e. ( 1 [,) +oo ) -> ( log ` X ) e. RR ) | 
						
							| 21 | 20 | adantl |  |-  ( ( B e. ( 1 (,) +oo ) /\ X e. ( 1 [,) +oo ) ) -> ( log ` X ) e. RR ) | 
						
							| 22 |  | 1xr |  |-  1 e. RR* | 
						
							| 23 |  | elioopnf |  |-  ( 1 e. RR* -> ( B e. ( 1 (,) +oo ) <-> ( B e. RR /\ 1 < B ) ) ) | 
						
							| 24 | 22 23 | ax-mp |  |-  ( B e. ( 1 (,) +oo ) <-> ( B e. RR /\ 1 < B ) ) | 
						
							| 25 |  | simpl |  |-  ( ( B e. RR /\ 1 < B ) -> B e. RR ) | 
						
							| 26 |  | 0red |  |-  ( B e. RR -> 0 e. RR ) | 
						
							| 27 |  | 1red |  |-  ( B e. RR -> 1 e. RR ) | 
						
							| 28 |  | id |  |-  ( B e. RR -> B e. RR ) | 
						
							| 29 |  | lttr |  |-  ( ( 0 e. RR /\ 1 e. RR /\ B e. RR ) -> ( ( 0 < 1 /\ 1 < B ) -> 0 < B ) ) | 
						
							| 30 | 26 27 28 29 | syl3anc |  |-  ( B e. RR -> ( ( 0 < 1 /\ 1 < B ) -> 0 < B ) ) | 
						
							| 31 | 10 30 | mpani |  |-  ( B e. RR -> ( 1 < B -> 0 < B ) ) | 
						
							| 32 | 31 | imp |  |-  ( ( B e. RR /\ 1 < B ) -> 0 < B ) | 
						
							| 33 | 25 32 | elrpd |  |-  ( ( B e. RR /\ 1 < B ) -> B e. RR+ ) | 
						
							| 34 | 24 33 | sylbi |  |-  ( B e. ( 1 (,) +oo ) -> B e. RR+ ) | 
						
							| 35 | 34 | relogcld |  |-  ( B e. ( 1 (,) +oo ) -> ( log ` B ) e. RR ) | 
						
							| 36 | 35 | adantr |  |-  ( ( B e. ( 1 (,) +oo ) /\ X e. ( 1 [,) +oo ) ) -> ( log ` B ) e. RR ) | 
						
							| 37 |  | regt1loggt0 |  |-  ( B e. ( 1 (,) +oo ) -> 0 < ( log ` B ) ) | 
						
							| 38 | 37 | adantr |  |-  ( ( B e. ( 1 (,) +oo ) /\ X e. ( 1 [,) +oo ) ) -> 0 < ( log ` B ) ) | 
						
							| 39 |  | ge0div |  |-  ( ( ( log ` X ) e. RR /\ ( log ` B ) e. RR /\ 0 < ( log ` B ) ) -> ( 0 <_ ( log ` X ) <-> 0 <_ ( ( log ` X ) / ( log ` B ) ) ) ) | 
						
							| 40 | 21 36 38 39 | syl3anc |  |-  ( ( B e. ( 1 (,) +oo ) /\ X e. ( 1 [,) +oo ) ) -> ( 0 <_ ( log ` X ) <-> 0 <_ ( ( log ` X ) / ( log ` B ) ) ) ) | 
						
							| 41 | 8 40 | mpbid |  |-  ( ( B e. ( 1 (,) +oo ) /\ X e. ( 1 [,) +oo ) ) -> 0 <_ ( ( log ` X ) / ( log ` B ) ) ) | 
						
							| 42 |  | recn |  |-  ( B e. RR -> B e. CC ) | 
						
							| 43 | 42 | adantr |  |-  ( ( B e. RR /\ 1 < B ) -> B e. CC ) | 
						
							| 44 | 32 | gt0ne0d |  |-  ( ( B e. RR /\ 1 < B ) -> B =/= 0 ) | 
						
							| 45 | 27 28 | ltlend |  |-  ( B e. RR -> ( 1 < B <-> ( 1 <_ B /\ B =/= 1 ) ) ) | 
						
							| 46 | 45 | simplbda |  |-  ( ( B e. RR /\ 1 < B ) -> B =/= 1 ) | 
						
							| 47 | 43 44 46 | 3jca |  |-  ( ( B e. RR /\ 1 < B ) -> ( B e. CC /\ B =/= 0 /\ B =/= 1 ) ) | 
						
							| 48 |  | eldifpr |  |-  ( B e. ( CC \ { 0 , 1 } ) <-> ( B e. CC /\ B =/= 0 /\ B =/= 1 ) ) | 
						
							| 49 | 47 24 48 | 3imtr4i |  |-  ( B e. ( 1 (,) +oo ) -> B e. ( CC \ { 0 , 1 } ) ) | 
						
							| 50 |  | recn |  |-  ( X e. RR -> X e. CC ) | 
						
							| 51 | 50 | adantr |  |-  ( ( X e. RR /\ 1 <_ X ) -> X e. CC ) | 
						
							| 52 | 17 | gt0ne0d |  |-  ( ( X e. RR /\ 1 <_ X ) -> X =/= 0 ) | 
						
							| 53 | 51 52 | jca |  |-  ( ( X e. RR /\ 1 <_ X ) -> ( X e. CC /\ X =/= 0 ) ) | 
						
							| 54 |  | eldifsn |  |-  ( X e. ( CC \ { 0 } ) <-> ( X e. CC /\ X =/= 0 ) ) | 
						
							| 55 | 53 3 54 | 3imtr4i |  |-  ( X e. ( 1 [,) +oo ) -> X e. ( CC \ { 0 } ) ) | 
						
							| 56 |  | logbval |  |-  ( ( B e. ( CC \ { 0 , 1 } ) /\ X e. ( CC \ { 0 } ) ) -> ( B logb X ) = ( ( log ` X ) / ( log ` B ) ) ) | 
						
							| 57 | 49 55 56 | syl2an |  |-  ( ( B e. ( 1 (,) +oo ) /\ X e. ( 1 [,) +oo ) ) -> ( B logb X ) = ( ( log ` X ) / ( log ` B ) ) ) | 
						
							| 58 | 41 57 | breqtrrd |  |-  ( ( B e. ( 1 (,) +oo ) /\ X e. ( 1 [,) +oo ) ) -> 0 <_ ( B logb X ) ) |