| Step |
Hyp |
Ref |
Expression |
| 1 |
|
1re |
|- 1 e. RR |
| 2 |
|
elicopnf |
|- ( 1 e. RR -> ( X e. ( 1 [,) +oo ) <-> ( X e. RR /\ 1 <_ X ) ) ) |
| 3 |
1 2
|
ax-mp |
|- ( X e. ( 1 [,) +oo ) <-> ( X e. RR /\ 1 <_ X ) ) |
| 4 |
|
id |
|- ( ( X e. RR /\ 1 <_ X ) -> ( X e. RR /\ 1 <_ X ) ) |
| 5 |
3 4
|
sylbi |
|- ( X e. ( 1 [,) +oo ) -> ( X e. RR /\ 1 <_ X ) ) |
| 6 |
5
|
adantl |
|- ( ( B e. ( 1 (,) +oo ) /\ X e. ( 1 [,) +oo ) ) -> ( X e. RR /\ 1 <_ X ) ) |
| 7 |
|
logge0 |
|- ( ( X e. RR /\ 1 <_ X ) -> 0 <_ ( log ` X ) ) |
| 8 |
6 7
|
syl |
|- ( ( B e. ( 1 (,) +oo ) /\ X e. ( 1 [,) +oo ) ) -> 0 <_ ( log ` X ) ) |
| 9 |
|
simpl |
|- ( ( X e. RR /\ 1 <_ X ) -> X e. RR ) |
| 10 |
|
0lt1 |
|- 0 < 1 |
| 11 |
|
0red |
|- ( X e. RR -> 0 e. RR ) |
| 12 |
|
1red |
|- ( X e. RR -> 1 e. RR ) |
| 13 |
|
id |
|- ( X e. RR -> X e. RR ) |
| 14 |
|
ltletr |
|- ( ( 0 e. RR /\ 1 e. RR /\ X e. RR ) -> ( ( 0 < 1 /\ 1 <_ X ) -> 0 < X ) ) |
| 15 |
11 12 13 14
|
syl3anc |
|- ( X e. RR -> ( ( 0 < 1 /\ 1 <_ X ) -> 0 < X ) ) |
| 16 |
10 15
|
mpani |
|- ( X e. RR -> ( 1 <_ X -> 0 < X ) ) |
| 17 |
16
|
imp |
|- ( ( X e. RR /\ 1 <_ X ) -> 0 < X ) |
| 18 |
9 17
|
elrpd |
|- ( ( X e. RR /\ 1 <_ X ) -> X e. RR+ ) |
| 19 |
3 18
|
sylbi |
|- ( X e. ( 1 [,) +oo ) -> X e. RR+ ) |
| 20 |
19
|
relogcld |
|- ( X e. ( 1 [,) +oo ) -> ( log ` X ) e. RR ) |
| 21 |
20
|
adantl |
|- ( ( B e. ( 1 (,) +oo ) /\ X e. ( 1 [,) +oo ) ) -> ( log ` X ) e. RR ) |
| 22 |
|
1xr |
|- 1 e. RR* |
| 23 |
|
elioopnf |
|- ( 1 e. RR* -> ( B e. ( 1 (,) +oo ) <-> ( B e. RR /\ 1 < B ) ) ) |
| 24 |
22 23
|
ax-mp |
|- ( B e. ( 1 (,) +oo ) <-> ( B e. RR /\ 1 < B ) ) |
| 25 |
|
simpl |
|- ( ( B e. RR /\ 1 < B ) -> B e. RR ) |
| 26 |
|
0red |
|- ( B e. RR -> 0 e. RR ) |
| 27 |
|
1red |
|- ( B e. RR -> 1 e. RR ) |
| 28 |
|
id |
|- ( B e. RR -> B e. RR ) |
| 29 |
|
lttr |
|- ( ( 0 e. RR /\ 1 e. RR /\ B e. RR ) -> ( ( 0 < 1 /\ 1 < B ) -> 0 < B ) ) |
| 30 |
26 27 28 29
|
syl3anc |
|- ( B e. RR -> ( ( 0 < 1 /\ 1 < B ) -> 0 < B ) ) |
| 31 |
10 30
|
mpani |
|- ( B e. RR -> ( 1 < B -> 0 < B ) ) |
| 32 |
31
|
imp |
|- ( ( B e. RR /\ 1 < B ) -> 0 < B ) |
| 33 |
25 32
|
elrpd |
|- ( ( B e. RR /\ 1 < B ) -> B e. RR+ ) |
| 34 |
24 33
|
sylbi |
|- ( B e. ( 1 (,) +oo ) -> B e. RR+ ) |
| 35 |
34
|
relogcld |
|- ( B e. ( 1 (,) +oo ) -> ( log ` B ) e. RR ) |
| 36 |
35
|
adantr |
|- ( ( B e. ( 1 (,) +oo ) /\ X e. ( 1 [,) +oo ) ) -> ( log ` B ) e. RR ) |
| 37 |
|
regt1loggt0 |
|- ( B e. ( 1 (,) +oo ) -> 0 < ( log ` B ) ) |
| 38 |
37
|
adantr |
|- ( ( B e. ( 1 (,) +oo ) /\ X e. ( 1 [,) +oo ) ) -> 0 < ( log ` B ) ) |
| 39 |
|
ge0div |
|- ( ( ( log ` X ) e. RR /\ ( log ` B ) e. RR /\ 0 < ( log ` B ) ) -> ( 0 <_ ( log ` X ) <-> 0 <_ ( ( log ` X ) / ( log ` B ) ) ) ) |
| 40 |
21 36 38 39
|
syl3anc |
|- ( ( B e. ( 1 (,) +oo ) /\ X e. ( 1 [,) +oo ) ) -> ( 0 <_ ( log ` X ) <-> 0 <_ ( ( log ` X ) / ( log ` B ) ) ) ) |
| 41 |
8 40
|
mpbid |
|- ( ( B e. ( 1 (,) +oo ) /\ X e. ( 1 [,) +oo ) ) -> 0 <_ ( ( log ` X ) / ( log ` B ) ) ) |
| 42 |
|
recn |
|- ( B e. RR -> B e. CC ) |
| 43 |
42
|
adantr |
|- ( ( B e. RR /\ 1 < B ) -> B e. CC ) |
| 44 |
32
|
gt0ne0d |
|- ( ( B e. RR /\ 1 < B ) -> B =/= 0 ) |
| 45 |
27 28
|
ltlend |
|- ( B e. RR -> ( 1 < B <-> ( 1 <_ B /\ B =/= 1 ) ) ) |
| 46 |
45
|
simplbda |
|- ( ( B e. RR /\ 1 < B ) -> B =/= 1 ) |
| 47 |
43 44 46
|
3jca |
|- ( ( B e. RR /\ 1 < B ) -> ( B e. CC /\ B =/= 0 /\ B =/= 1 ) ) |
| 48 |
|
eldifpr |
|- ( B e. ( CC \ { 0 , 1 } ) <-> ( B e. CC /\ B =/= 0 /\ B =/= 1 ) ) |
| 49 |
47 24 48
|
3imtr4i |
|- ( B e. ( 1 (,) +oo ) -> B e. ( CC \ { 0 , 1 } ) ) |
| 50 |
|
recn |
|- ( X e. RR -> X e. CC ) |
| 51 |
50
|
adantr |
|- ( ( X e. RR /\ 1 <_ X ) -> X e. CC ) |
| 52 |
17
|
gt0ne0d |
|- ( ( X e. RR /\ 1 <_ X ) -> X =/= 0 ) |
| 53 |
51 52
|
jca |
|- ( ( X e. RR /\ 1 <_ X ) -> ( X e. CC /\ X =/= 0 ) ) |
| 54 |
|
eldifsn |
|- ( X e. ( CC \ { 0 } ) <-> ( X e. CC /\ X =/= 0 ) ) |
| 55 |
53 3 54
|
3imtr4i |
|- ( X e. ( 1 [,) +oo ) -> X e. ( CC \ { 0 } ) ) |
| 56 |
|
logbval |
|- ( ( B e. ( CC \ { 0 , 1 } ) /\ X e. ( CC \ { 0 } ) ) -> ( B logb X ) = ( ( log ` X ) / ( log ` B ) ) ) |
| 57 |
49 55 56
|
syl2an |
|- ( ( B e. ( 1 (,) +oo ) /\ X e. ( 1 [,) +oo ) ) -> ( B logb X ) = ( ( log ` X ) / ( log ` B ) ) ) |
| 58 |
41 57
|
breqtrrd |
|- ( ( B e. ( 1 (,) +oo ) /\ X e. ( 1 [,) +oo ) ) -> 0 <_ ( B logb X ) ) |