Metamath Proof Explorer


Theorem rege1logbzge0

Description: The general logarithm, with an integer base greater than 1, for a real number greater than or equal to 1 is greater than or equal to 0. (Contributed by AV, 25-May-2020)

Ref Expression
Assertion rege1logbzge0
|- ( ( B e. ( ZZ>= ` 2 ) /\ X e. ( 1 [,) +oo ) ) -> 0 <_ ( B logb X ) )

Proof

Step Hyp Ref Expression
1 zre
 |-  ( B e. ZZ -> B e. RR )
2 1 3ad2ant2
 |-  ( ( 2 e. ZZ /\ B e. ZZ /\ 2 <_ B ) -> B e. RR )
3 1lt2
 |-  1 < 2
4 1re
 |-  1 e. RR
5 4 a1i
 |-  ( ( 2 e. ZZ /\ B e. ZZ ) -> 1 e. RR )
6 2re
 |-  2 e. RR
7 6 a1i
 |-  ( ( 2 e. ZZ /\ B e. ZZ ) -> 2 e. RR )
8 1 adantl
 |-  ( ( 2 e. ZZ /\ B e. ZZ ) -> B e. RR )
9 ltletr
 |-  ( ( 1 e. RR /\ 2 e. RR /\ B e. RR ) -> ( ( 1 < 2 /\ 2 <_ B ) -> 1 < B ) )
10 5 7 8 9 syl3anc
 |-  ( ( 2 e. ZZ /\ B e. ZZ ) -> ( ( 1 < 2 /\ 2 <_ B ) -> 1 < B ) )
11 3 10 mpani
 |-  ( ( 2 e. ZZ /\ B e. ZZ ) -> ( 2 <_ B -> 1 < B ) )
12 11 3impia
 |-  ( ( 2 e. ZZ /\ B e. ZZ /\ 2 <_ B ) -> 1 < B )
13 2 12 jca
 |-  ( ( 2 e. ZZ /\ B e. ZZ /\ 2 <_ B ) -> ( B e. RR /\ 1 < B ) )
14 eluz2
 |-  ( B e. ( ZZ>= ` 2 ) <-> ( 2 e. ZZ /\ B e. ZZ /\ 2 <_ B ) )
15 1xr
 |-  1 e. RR*
16 elioopnf
 |-  ( 1 e. RR* -> ( B e. ( 1 (,) +oo ) <-> ( B e. RR /\ 1 < B ) ) )
17 15 16 ax-mp
 |-  ( B e. ( 1 (,) +oo ) <-> ( B e. RR /\ 1 < B ) )
18 13 14 17 3imtr4i
 |-  ( B e. ( ZZ>= ` 2 ) -> B e. ( 1 (,) +oo ) )
19 rege1logbrege0
 |-  ( ( B e. ( 1 (,) +oo ) /\ X e. ( 1 [,) +oo ) ) -> 0 <_ ( B logb X ) )
20 18 19 sylan
 |-  ( ( B e. ( ZZ>= ` 2 ) /\ X e. ( 1 [,) +oo ) ) -> 0 <_ ( B logb X ) )