Step |
Hyp |
Ref |
Expression |
1 |
|
zre |
|- ( B e. ZZ -> B e. RR ) |
2 |
1
|
3ad2ant2 |
|- ( ( 2 e. ZZ /\ B e. ZZ /\ 2 <_ B ) -> B e. RR ) |
3 |
|
1lt2 |
|- 1 < 2 |
4 |
|
1re |
|- 1 e. RR |
5 |
4
|
a1i |
|- ( ( 2 e. ZZ /\ B e. ZZ ) -> 1 e. RR ) |
6 |
|
2re |
|- 2 e. RR |
7 |
6
|
a1i |
|- ( ( 2 e. ZZ /\ B e. ZZ ) -> 2 e. RR ) |
8 |
1
|
adantl |
|- ( ( 2 e. ZZ /\ B e. ZZ ) -> B e. RR ) |
9 |
|
ltletr |
|- ( ( 1 e. RR /\ 2 e. RR /\ B e. RR ) -> ( ( 1 < 2 /\ 2 <_ B ) -> 1 < B ) ) |
10 |
5 7 8 9
|
syl3anc |
|- ( ( 2 e. ZZ /\ B e. ZZ ) -> ( ( 1 < 2 /\ 2 <_ B ) -> 1 < B ) ) |
11 |
3 10
|
mpani |
|- ( ( 2 e. ZZ /\ B e. ZZ ) -> ( 2 <_ B -> 1 < B ) ) |
12 |
11
|
3impia |
|- ( ( 2 e. ZZ /\ B e. ZZ /\ 2 <_ B ) -> 1 < B ) |
13 |
2 12
|
jca |
|- ( ( 2 e. ZZ /\ B e. ZZ /\ 2 <_ B ) -> ( B e. RR /\ 1 < B ) ) |
14 |
|
eluz2 |
|- ( B e. ( ZZ>= ` 2 ) <-> ( 2 e. ZZ /\ B e. ZZ /\ 2 <_ B ) ) |
15 |
|
1xr |
|- 1 e. RR* |
16 |
|
elioopnf |
|- ( 1 e. RR* -> ( B e. ( 1 (,) +oo ) <-> ( B e. RR /\ 1 < B ) ) ) |
17 |
15 16
|
ax-mp |
|- ( B e. ( 1 (,) +oo ) <-> ( B e. RR /\ 1 < B ) ) |
18 |
13 14 17
|
3imtr4i |
|- ( B e. ( ZZ>= ` 2 ) -> B e. ( 1 (,) +oo ) ) |
19 |
|
rege1logbrege0 |
|- ( ( B e. ( 1 (,) +oo ) /\ X e. ( 1 [,) +oo ) ) -> 0 <_ ( B logb X ) ) |
20 |
18 19
|
sylan |
|- ( ( B e. ( ZZ>= ` 2 ) /\ X e. ( 1 [,) +oo ) ) -> 0 <_ ( B logb X ) ) |