| Step | Hyp | Ref | Expression | 
						
							| 1 |  | zre |  |-  ( B e. ZZ -> B e. RR ) | 
						
							| 2 | 1 | 3ad2ant2 |  |-  ( ( 2 e. ZZ /\ B e. ZZ /\ 2 <_ B ) -> B e. RR ) | 
						
							| 3 |  | 1lt2 |  |-  1 < 2 | 
						
							| 4 |  | 1re |  |-  1 e. RR | 
						
							| 5 | 4 | a1i |  |-  ( ( 2 e. ZZ /\ B e. ZZ ) -> 1 e. RR ) | 
						
							| 6 |  | 2re |  |-  2 e. RR | 
						
							| 7 | 6 | a1i |  |-  ( ( 2 e. ZZ /\ B e. ZZ ) -> 2 e. RR ) | 
						
							| 8 | 1 | adantl |  |-  ( ( 2 e. ZZ /\ B e. ZZ ) -> B e. RR ) | 
						
							| 9 |  | ltletr |  |-  ( ( 1 e. RR /\ 2 e. RR /\ B e. RR ) -> ( ( 1 < 2 /\ 2 <_ B ) -> 1 < B ) ) | 
						
							| 10 | 5 7 8 9 | syl3anc |  |-  ( ( 2 e. ZZ /\ B e. ZZ ) -> ( ( 1 < 2 /\ 2 <_ B ) -> 1 < B ) ) | 
						
							| 11 | 3 10 | mpani |  |-  ( ( 2 e. ZZ /\ B e. ZZ ) -> ( 2 <_ B -> 1 < B ) ) | 
						
							| 12 | 11 | 3impia |  |-  ( ( 2 e. ZZ /\ B e. ZZ /\ 2 <_ B ) -> 1 < B ) | 
						
							| 13 | 2 12 | jca |  |-  ( ( 2 e. ZZ /\ B e. ZZ /\ 2 <_ B ) -> ( B e. RR /\ 1 < B ) ) | 
						
							| 14 |  | eluz2 |  |-  ( B e. ( ZZ>= ` 2 ) <-> ( 2 e. ZZ /\ B e. ZZ /\ 2 <_ B ) ) | 
						
							| 15 |  | 1xr |  |-  1 e. RR* | 
						
							| 16 |  | elioopnf |  |-  ( 1 e. RR* -> ( B e. ( 1 (,) +oo ) <-> ( B e. RR /\ 1 < B ) ) ) | 
						
							| 17 | 15 16 | ax-mp |  |-  ( B e. ( 1 (,) +oo ) <-> ( B e. RR /\ 1 < B ) ) | 
						
							| 18 | 13 14 17 | 3imtr4i |  |-  ( B e. ( ZZ>= ` 2 ) -> B e. ( 1 (,) +oo ) ) | 
						
							| 19 |  | rege1logbrege0 |  |-  ( ( B e. ( 1 (,) +oo ) /\ X e. ( 1 [,) +oo ) ) -> 0 <_ ( B logb X ) ) | 
						
							| 20 | 18 19 | sylan |  |-  ( ( B e. ( ZZ>= ` 2 ) /\ X e. ( 1 [,) +oo ) ) -> 0 <_ ( B logb X ) ) |