| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fllogbd.b |  |-  ( ph -> B e. ( ZZ>= ` 2 ) ) | 
						
							| 2 |  | fllogbd.x |  |-  ( ph -> X e. RR+ ) | 
						
							| 3 |  | fllogbd.e |  |-  E = ( |_ ` ( B logb X ) ) | 
						
							| 4 |  | relogbzcl |  |-  ( ( B e. ( ZZ>= ` 2 ) /\ X e. RR+ ) -> ( B logb X ) e. RR ) | 
						
							| 5 | 1 2 4 | syl2anc |  |-  ( ph -> ( B logb X ) e. RR ) | 
						
							| 6 |  | flle |  |-  ( ( B logb X ) e. RR -> ( |_ ` ( B logb X ) ) <_ ( B logb X ) ) | 
						
							| 7 | 5 6 | syl |  |-  ( ph -> ( |_ ` ( B logb X ) ) <_ ( B logb X ) ) | 
						
							| 8 | 3 7 | eqbrtrid |  |-  ( ph -> E <_ ( B logb X ) ) | 
						
							| 9 |  | eluzelz |  |-  ( B e. ( ZZ>= ` 2 ) -> B e. ZZ ) | 
						
							| 10 | 1 9 | syl |  |-  ( ph -> B e. ZZ ) | 
						
							| 11 | 10 | zred |  |-  ( ph -> B e. RR ) | 
						
							| 12 |  | eluz2b1 |  |-  ( B e. ( ZZ>= ` 2 ) <-> ( B e. ZZ /\ 1 < B ) ) | 
						
							| 13 | 12 | simprbi |  |-  ( B e. ( ZZ>= ` 2 ) -> 1 < B ) | 
						
							| 14 | 1 13 | syl |  |-  ( ph -> 1 < B ) | 
						
							| 15 | 5 | flcld |  |-  ( ph -> ( |_ ` ( B logb X ) ) e. ZZ ) | 
						
							| 16 | 3 15 | eqeltrid |  |-  ( ph -> E e. ZZ ) | 
						
							| 17 | 16 | zred |  |-  ( ph -> E e. RR ) | 
						
							| 18 | 11 14 17 5 | cxpled |  |-  ( ph -> ( E <_ ( B logb X ) <-> ( B ^c E ) <_ ( B ^c ( B logb X ) ) ) ) | 
						
							| 19 | 8 18 | mpbid |  |-  ( ph -> ( B ^c E ) <_ ( B ^c ( B logb X ) ) ) | 
						
							| 20 | 10 | zcnd |  |-  ( ph -> B e. CC ) | 
						
							| 21 |  | eluz2nn |  |-  ( B e. ( ZZ>= ` 2 ) -> B e. NN ) | 
						
							| 22 | 1 21 | syl |  |-  ( ph -> B e. NN ) | 
						
							| 23 | 22 | nnne0d |  |-  ( ph -> B =/= 0 ) | 
						
							| 24 | 20 23 16 | cxpexpzd |  |-  ( ph -> ( B ^c E ) = ( B ^ E ) ) | 
						
							| 25 |  | eluz2cnn0n1 |  |-  ( B e. ( ZZ>= ` 2 ) -> B e. ( CC \ { 0 , 1 } ) ) | 
						
							| 26 | 1 25 | syl |  |-  ( ph -> B e. ( CC \ { 0 , 1 } ) ) | 
						
							| 27 |  | rpcnne0 |  |-  ( X e. RR+ -> ( X e. CC /\ X =/= 0 ) ) | 
						
							| 28 |  | eldifsn |  |-  ( X e. ( CC \ { 0 } ) <-> ( X e. CC /\ X =/= 0 ) ) | 
						
							| 29 | 27 28 | sylibr |  |-  ( X e. RR+ -> X e. ( CC \ { 0 } ) ) | 
						
							| 30 | 2 29 | syl |  |-  ( ph -> X e. ( CC \ { 0 } ) ) | 
						
							| 31 |  | cxplogb |  |-  ( ( B e. ( CC \ { 0 , 1 } ) /\ X e. ( CC \ { 0 } ) ) -> ( B ^c ( B logb X ) ) = X ) | 
						
							| 32 | 26 30 31 | syl2anc |  |-  ( ph -> ( B ^c ( B logb X ) ) = X ) | 
						
							| 33 | 19 24 32 | 3brtr3d |  |-  ( ph -> ( B ^ E ) <_ X ) | 
						
							| 34 |  | flltp1 |  |-  ( ( B logb X ) e. RR -> ( B logb X ) < ( ( |_ ` ( B logb X ) ) + 1 ) ) | 
						
							| 35 | 5 34 | syl |  |-  ( ph -> ( B logb X ) < ( ( |_ ` ( B logb X ) ) + 1 ) ) | 
						
							| 36 | 3 | a1i |  |-  ( ph -> E = ( |_ ` ( B logb X ) ) ) | 
						
							| 37 | 36 | oveq1d |  |-  ( ph -> ( E + 1 ) = ( ( |_ ` ( B logb X ) ) + 1 ) ) | 
						
							| 38 | 35 37 | breqtrrd |  |-  ( ph -> ( B logb X ) < ( E + 1 ) ) | 
						
							| 39 | 16 | peano2zd |  |-  ( ph -> ( E + 1 ) e. ZZ ) | 
						
							| 40 | 39 | zred |  |-  ( ph -> ( E + 1 ) e. RR ) | 
						
							| 41 | 11 14 5 40 | cxpltd |  |-  ( ph -> ( ( B logb X ) < ( E + 1 ) <-> ( B ^c ( B logb X ) ) < ( B ^c ( E + 1 ) ) ) ) | 
						
							| 42 | 38 41 | mpbid |  |-  ( ph -> ( B ^c ( B logb X ) ) < ( B ^c ( E + 1 ) ) ) | 
						
							| 43 | 20 23 39 | cxpexpzd |  |-  ( ph -> ( B ^c ( E + 1 ) ) = ( B ^ ( E + 1 ) ) ) | 
						
							| 44 | 42 32 43 | 3brtr3d |  |-  ( ph -> X < ( B ^ ( E + 1 ) ) ) | 
						
							| 45 | 33 44 | jca |  |-  ( ph -> ( ( B ^ E ) <_ X /\ X < ( B ^ ( E + 1 ) ) ) ) |