Step |
Hyp |
Ref |
Expression |
1 |
|
fllogbd.b |
|- ( ph -> B e. ( ZZ>= ` 2 ) ) |
2 |
|
fllogbd.x |
|- ( ph -> X e. RR+ ) |
3 |
|
fllogbd.e |
|- E = ( |_ ` ( B logb X ) ) |
4 |
|
relogbzcl |
|- ( ( B e. ( ZZ>= ` 2 ) /\ X e. RR+ ) -> ( B logb X ) e. RR ) |
5 |
1 2 4
|
syl2anc |
|- ( ph -> ( B logb X ) e. RR ) |
6 |
|
flle |
|- ( ( B logb X ) e. RR -> ( |_ ` ( B logb X ) ) <_ ( B logb X ) ) |
7 |
5 6
|
syl |
|- ( ph -> ( |_ ` ( B logb X ) ) <_ ( B logb X ) ) |
8 |
3 7
|
eqbrtrid |
|- ( ph -> E <_ ( B logb X ) ) |
9 |
|
eluzelz |
|- ( B e. ( ZZ>= ` 2 ) -> B e. ZZ ) |
10 |
1 9
|
syl |
|- ( ph -> B e. ZZ ) |
11 |
10
|
zred |
|- ( ph -> B e. RR ) |
12 |
|
eluz2b1 |
|- ( B e. ( ZZ>= ` 2 ) <-> ( B e. ZZ /\ 1 < B ) ) |
13 |
12
|
simprbi |
|- ( B e. ( ZZ>= ` 2 ) -> 1 < B ) |
14 |
1 13
|
syl |
|- ( ph -> 1 < B ) |
15 |
5
|
flcld |
|- ( ph -> ( |_ ` ( B logb X ) ) e. ZZ ) |
16 |
3 15
|
eqeltrid |
|- ( ph -> E e. ZZ ) |
17 |
16
|
zred |
|- ( ph -> E e. RR ) |
18 |
11 14 17 5
|
cxpled |
|- ( ph -> ( E <_ ( B logb X ) <-> ( B ^c E ) <_ ( B ^c ( B logb X ) ) ) ) |
19 |
8 18
|
mpbid |
|- ( ph -> ( B ^c E ) <_ ( B ^c ( B logb X ) ) ) |
20 |
10
|
zcnd |
|- ( ph -> B e. CC ) |
21 |
|
eluz2nn |
|- ( B e. ( ZZ>= ` 2 ) -> B e. NN ) |
22 |
1 21
|
syl |
|- ( ph -> B e. NN ) |
23 |
22
|
nnne0d |
|- ( ph -> B =/= 0 ) |
24 |
20 23 16
|
cxpexpzd |
|- ( ph -> ( B ^c E ) = ( B ^ E ) ) |
25 |
|
eluz2cnn0n1 |
|- ( B e. ( ZZ>= ` 2 ) -> B e. ( CC \ { 0 , 1 } ) ) |
26 |
1 25
|
syl |
|- ( ph -> B e. ( CC \ { 0 , 1 } ) ) |
27 |
|
rpcnne0 |
|- ( X e. RR+ -> ( X e. CC /\ X =/= 0 ) ) |
28 |
|
eldifsn |
|- ( X e. ( CC \ { 0 } ) <-> ( X e. CC /\ X =/= 0 ) ) |
29 |
27 28
|
sylibr |
|- ( X e. RR+ -> X e. ( CC \ { 0 } ) ) |
30 |
2 29
|
syl |
|- ( ph -> X e. ( CC \ { 0 } ) ) |
31 |
|
cxplogb |
|- ( ( B e. ( CC \ { 0 , 1 } ) /\ X e. ( CC \ { 0 } ) ) -> ( B ^c ( B logb X ) ) = X ) |
32 |
26 30 31
|
syl2anc |
|- ( ph -> ( B ^c ( B logb X ) ) = X ) |
33 |
19 24 32
|
3brtr3d |
|- ( ph -> ( B ^ E ) <_ X ) |
34 |
|
flltp1 |
|- ( ( B logb X ) e. RR -> ( B logb X ) < ( ( |_ ` ( B logb X ) ) + 1 ) ) |
35 |
5 34
|
syl |
|- ( ph -> ( B logb X ) < ( ( |_ ` ( B logb X ) ) + 1 ) ) |
36 |
3
|
a1i |
|- ( ph -> E = ( |_ ` ( B logb X ) ) ) |
37 |
36
|
oveq1d |
|- ( ph -> ( E + 1 ) = ( ( |_ ` ( B logb X ) ) + 1 ) ) |
38 |
35 37
|
breqtrrd |
|- ( ph -> ( B logb X ) < ( E + 1 ) ) |
39 |
16
|
peano2zd |
|- ( ph -> ( E + 1 ) e. ZZ ) |
40 |
39
|
zred |
|- ( ph -> ( E + 1 ) e. RR ) |
41 |
11 14 5 40
|
cxpltd |
|- ( ph -> ( ( B logb X ) < ( E + 1 ) <-> ( B ^c ( B logb X ) ) < ( B ^c ( E + 1 ) ) ) ) |
42 |
38 41
|
mpbid |
|- ( ph -> ( B ^c ( B logb X ) ) < ( B ^c ( E + 1 ) ) ) |
43 |
20 23 39
|
cxpexpzd |
|- ( ph -> ( B ^c ( E + 1 ) ) = ( B ^ ( E + 1 ) ) ) |
44 |
42 32 43
|
3brtr3d |
|- ( ph -> X < ( B ^ ( E + 1 ) ) ) |
45 |
33 44
|
jca |
|- ( ph -> ( ( B ^ E ) <_ X /\ X < ( B ^ ( E + 1 ) ) ) ) |