| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fllogbd.b |
|- ( ph -> B e. ( ZZ>= ` 2 ) ) |
| 2 |
|
fllogbd.x |
|- ( ph -> X e. RR+ ) |
| 3 |
|
fllogbd.e |
|- E = ( |_ ` ( B logb X ) ) |
| 4 |
|
relogbzcl |
|- ( ( B e. ( ZZ>= ` 2 ) /\ X e. RR+ ) -> ( B logb X ) e. RR ) |
| 5 |
1 2 4
|
syl2anc |
|- ( ph -> ( B logb X ) e. RR ) |
| 6 |
|
flle |
|- ( ( B logb X ) e. RR -> ( |_ ` ( B logb X ) ) <_ ( B logb X ) ) |
| 7 |
5 6
|
syl |
|- ( ph -> ( |_ ` ( B logb X ) ) <_ ( B logb X ) ) |
| 8 |
3 7
|
eqbrtrid |
|- ( ph -> E <_ ( B logb X ) ) |
| 9 |
|
eluzelz |
|- ( B e. ( ZZ>= ` 2 ) -> B e. ZZ ) |
| 10 |
1 9
|
syl |
|- ( ph -> B e. ZZ ) |
| 11 |
10
|
zred |
|- ( ph -> B e. RR ) |
| 12 |
|
eluz2b1 |
|- ( B e. ( ZZ>= ` 2 ) <-> ( B e. ZZ /\ 1 < B ) ) |
| 13 |
12
|
simprbi |
|- ( B e. ( ZZ>= ` 2 ) -> 1 < B ) |
| 14 |
1 13
|
syl |
|- ( ph -> 1 < B ) |
| 15 |
5
|
flcld |
|- ( ph -> ( |_ ` ( B logb X ) ) e. ZZ ) |
| 16 |
3 15
|
eqeltrid |
|- ( ph -> E e. ZZ ) |
| 17 |
16
|
zred |
|- ( ph -> E e. RR ) |
| 18 |
11 14 17 5
|
cxpled |
|- ( ph -> ( E <_ ( B logb X ) <-> ( B ^c E ) <_ ( B ^c ( B logb X ) ) ) ) |
| 19 |
8 18
|
mpbid |
|- ( ph -> ( B ^c E ) <_ ( B ^c ( B logb X ) ) ) |
| 20 |
10
|
zcnd |
|- ( ph -> B e. CC ) |
| 21 |
|
eluz2nn |
|- ( B e. ( ZZ>= ` 2 ) -> B e. NN ) |
| 22 |
1 21
|
syl |
|- ( ph -> B e. NN ) |
| 23 |
22
|
nnne0d |
|- ( ph -> B =/= 0 ) |
| 24 |
20 23 16
|
cxpexpzd |
|- ( ph -> ( B ^c E ) = ( B ^ E ) ) |
| 25 |
|
eluz2cnn0n1 |
|- ( B e. ( ZZ>= ` 2 ) -> B e. ( CC \ { 0 , 1 } ) ) |
| 26 |
1 25
|
syl |
|- ( ph -> B e. ( CC \ { 0 , 1 } ) ) |
| 27 |
|
rpcnne0 |
|- ( X e. RR+ -> ( X e. CC /\ X =/= 0 ) ) |
| 28 |
|
eldifsn |
|- ( X e. ( CC \ { 0 } ) <-> ( X e. CC /\ X =/= 0 ) ) |
| 29 |
27 28
|
sylibr |
|- ( X e. RR+ -> X e. ( CC \ { 0 } ) ) |
| 30 |
2 29
|
syl |
|- ( ph -> X e. ( CC \ { 0 } ) ) |
| 31 |
|
cxplogb |
|- ( ( B e. ( CC \ { 0 , 1 } ) /\ X e. ( CC \ { 0 } ) ) -> ( B ^c ( B logb X ) ) = X ) |
| 32 |
26 30 31
|
syl2anc |
|- ( ph -> ( B ^c ( B logb X ) ) = X ) |
| 33 |
19 24 32
|
3brtr3d |
|- ( ph -> ( B ^ E ) <_ X ) |
| 34 |
|
flltp1 |
|- ( ( B logb X ) e. RR -> ( B logb X ) < ( ( |_ ` ( B logb X ) ) + 1 ) ) |
| 35 |
5 34
|
syl |
|- ( ph -> ( B logb X ) < ( ( |_ ` ( B logb X ) ) + 1 ) ) |
| 36 |
3
|
a1i |
|- ( ph -> E = ( |_ ` ( B logb X ) ) ) |
| 37 |
36
|
oveq1d |
|- ( ph -> ( E + 1 ) = ( ( |_ ` ( B logb X ) ) + 1 ) ) |
| 38 |
35 37
|
breqtrrd |
|- ( ph -> ( B logb X ) < ( E + 1 ) ) |
| 39 |
16
|
peano2zd |
|- ( ph -> ( E + 1 ) e. ZZ ) |
| 40 |
39
|
zred |
|- ( ph -> ( E + 1 ) e. RR ) |
| 41 |
11 14 5 40
|
cxpltd |
|- ( ph -> ( ( B logb X ) < ( E + 1 ) <-> ( B ^c ( B logb X ) ) < ( B ^c ( E + 1 ) ) ) ) |
| 42 |
38 41
|
mpbid |
|- ( ph -> ( B ^c ( B logb X ) ) < ( B ^c ( E + 1 ) ) ) |
| 43 |
20 23 39
|
cxpexpzd |
|- ( ph -> ( B ^c ( E + 1 ) ) = ( B ^ ( E + 1 ) ) ) |
| 44 |
42 32 43
|
3brtr3d |
|- ( ph -> X < ( B ^ ( E + 1 ) ) ) |
| 45 |
33 44
|
jca |
|- ( ph -> ( ( B ^ E ) <_ X /\ X < ( B ^ ( E + 1 ) ) ) ) |