| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rpcn |
|- ( B e. RR+ -> B e. CC ) |
| 2 |
1
|
adantr |
|- ( ( B e. RR+ /\ B =/= 1 ) -> B e. CC ) |
| 3 |
|
rpne0 |
|- ( B e. RR+ -> B =/= 0 ) |
| 4 |
3
|
adantr |
|- ( ( B e. RR+ /\ B =/= 1 ) -> B =/= 0 ) |
| 5 |
|
simpr |
|- ( ( B e. RR+ /\ B =/= 1 ) -> B =/= 1 ) |
| 6 |
2 4 5
|
3jca |
|- ( ( B e. RR+ /\ B =/= 1 ) -> ( B e. CC /\ B =/= 0 /\ B =/= 1 ) ) |
| 7 |
|
eldifsn |
|- ( B e. ( RR+ \ { 1 } ) <-> ( B e. RR+ /\ B =/= 1 ) ) |
| 8 |
|
eldifpr |
|- ( B e. ( CC \ { 0 , 1 } ) <-> ( B e. CC /\ B =/= 0 /\ B =/= 1 ) ) |
| 9 |
6 7 8
|
3imtr4i |
|- ( B e. ( RR+ \ { 1 } ) -> B e. ( CC \ { 0 , 1 } ) ) |
| 10 |
9
|
adantr |
|- ( ( B e. ( RR+ \ { 1 } ) /\ ( A e. RR+ /\ C e. RR ) ) -> B e. ( CC \ { 0 , 1 } ) ) |
| 11 |
|
simprl |
|- ( ( B e. ( RR+ \ { 1 } ) /\ ( A e. RR+ /\ C e. RR ) ) -> A e. RR+ ) |
| 12 |
|
eldifi |
|- ( B e. ( RR+ \ { 1 } ) -> B e. RR+ ) |
| 13 |
12
|
adantr |
|- ( ( B e. ( RR+ \ { 1 } ) /\ ( A e. RR+ /\ C e. RR ) ) -> B e. RR+ ) |
| 14 |
|
simpr |
|- ( ( A e. RR+ /\ C e. RR ) -> C e. RR ) |
| 15 |
14
|
adantl |
|- ( ( B e. ( RR+ \ { 1 } ) /\ ( A e. RR+ /\ C e. RR ) ) -> C e. RR ) |
| 16 |
|
relogbmulexp |
|- ( ( B e. ( CC \ { 0 , 1 } ) /\ ( A e. RR+ /\ B e. RR+ /\ C e. RR ) ) -> ( B logb ( A x. ( B ^c C ) ) ) = ( ( B logb A ) + ( C x. ( B logb B ) ) ) ) |
| 17 |
10 11 13 15 16
|
syl13anc |
|- ( ( B e. ( RR+ \ { 1 } ) /\ ( A e. RR+ /\ C e. RR ) ) -> ( B logb ( A x. ( B ^c C ) ) ) = ( ( B logb A ) + ( C x. ( B logb B ) ) ) ) |
| 18 |
7 6
|
sylbi |
|- ( B e. ( RR+ \ { 1 } ) -> ( B e. CC /\ B =/= 0 /\ B =/= 1 ) ) |
| 19 |
|
logbid1 |
|- ( ( B e. CC /\ B =/= 0 /\ B =/= 1 ) -> ( B logb B ) = 1 ) |
| 20 |
18 19
|
syl |
|- ( B e. ( RR+ \ { 1 } ) -> ( B logb B ) = 1 ) |
| 21 |
20
|
adantr |
|- ( ( B e. ( RR+ \ { 1 } ) /\ ( A e. RR+ /\ C e. RR ) ) -> ( B logb B ) = 1 ) |
| 22 |
21
|
oveq2d |
|- ( ( B e. ( RR+ \ { 1 } ) /\ ( A e. RR+ /\ C e. RR ) ) -> ( C x. ( B logb B ) ) = ( C x. 1 ) ) |
| 23 |
|
ax-1rid |
|- ( C e. RR -> ( C x. 1 ) = C ) |
| 24 |
23
|
adantl |
|- ( ( A e. RR+ /\ C e. RR ) -> ( C x. 1 ) = C ) |
| 25 |
24
|
adantl |
|- ( ( B e. ( RR+ \ { 1 } ) /\ ( A e. RR+ /\ C e. RR ) ) -> ( C x. 1 ) = C ) |
| 26 |
22 25
|
eqtrd |
|- ( ( B e. ( RR+ \ { 1 } ) /\ ( A e. RR+ /\ C e. RR ) ) -> ( C x. ( B logb B ) ) = C ) |
| 27 |
26
|
oveq2d |
|- ( ( B e. ( RR+ \ { 1 } ) /\ ( A e. RR+ /\ C e. RR ) ) -> ( ( B logb A ) + ( C x. ( B logb B ) ) ) = ( ( B logb A ) + C ) ) |
| 28 |
17 27
|
eqtrd |
|- ( ( B e. ( RR+ \ { 1 } ) /\ ( A e. RR+ /\ C e. RR ) ) -> ( B logb ( A x. ( B ^c C ) ) ) = ( ( B logb A ) + C ) ) |