| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rpcn |  |-  ( B e. RR+ -> B e. CC ) | 
						
							| 2 | 1 | adantr |  |-  ( ( B e. RR+ /\ B =/= 1 ) -> B e. CC ) | 
						
							| 3 |  | rpne0 |  |-  ( B e. RR+ -> B =/= 0 ) | 
						
							| 4 | 3 | adantr |  |-  ( ( B e. RR+ /\ B =/= 1 ) -> B =/= 0 ) | 
						
							| 5 |  | simpr |  |-  ( ( B e. RR+ /\ B =/= 1 ) -> B =/= 1 ) | 
						
							| 6 | 2 4 5 | 3jca |  |-  ( ( B e. RR+ /\ B =/= 1 ) -> ( B e. CC /\ B =/= 0 /\ B =/= 1 ) ) | 
						
							| 7 |  | eldifsn |  |-  ( B e. ( RR+ \ { 1 } ) <-> ( B e. RR+ /\ B =/= 1 ) ) | 
						
							| 8 |  | eldifpr |  |-  ( B e. ( CC \ { 0 , 1 } ) <-> ( B e. CC /\ B =/= 0 /\ B =/= 1 ) ) | 
						
							| 9 | 6 7 8 | 3imtr4i |  |-  ( B e. ( RR+ \ { 1 } ) -> B e. ( CC \ { 0 , 1 } ) ) | 
						
							| 10 | 9 | adantr |  |-  ( ( B e. ( RR+ \ { 1 } ) /\ ( A e. RR+ /\ C e. RR ) ) -> B e. ( CC \ { 0 , 1 } ) ) | 
						
							| 11 |  | simprl |  |-  ( ( B e. ( RR+ \ { 1 } ) /\ ( A e. RR+ /\ C e. RR ) ) -> A e. RR+ ) | 
						
							| 12 |  | eldifi |  |-  ( B e. ( RR+ \ { 1 } ) -> B e. RR+ ) | 
						
							| 13 | 12 | adantr |  |-  ( ( B e. ( RR+ \ { 1 } ) /\ ( A e. RR+ /\ C e. RR ) ) -> B e. RR+ ) | 
						
							| 14 |  | simpr |  |-  ( ( A e. RR+ /\ C e. RR ) -> C e. RR ) | 
						
							| 15 | 14 | adantl |  |-  ( ( B e. ( RR+ \ { 1 } ) /\ ( A e. RR+ /\ C e. RR ) ) -> C e. RR ) | 
						
							| 16 |  | relogbmulexp |  |-  ( ( B e. ( CC \ { 0 , 1 } ) /\ ( A e. RR+ /\ B e. RR+ /\ C e. RR ) ) -> ( B logb ( A x. ( B ^c C ) ) ) = ( ( B logb A ) + ( C x. ( B logb B ) ) ) ) | 
						
							| 17 | 10 11 13 15 16 | syl13anc |  |-  ( ( B e. ( RR+ \ { 1 } ) /\ ( A e. RR+ /\ C e. RR ) ) -> ( B logb ( A x. ( B ^c C ) ) ) = ( ( B logb A ) + ( C x. ( B logb B ) ) ) ) | 
						
							| 18 | 7 6 | sylbi |  |-  ( B e. ( RR+ \ { 1 } ) -> ( B e. CC /\ B =/= 0 /\ B =/= 1 ) ) | 
						
							| 19 |  | logbid1 |  |-  ( ( B e. CC /\ B =/= 0 /\ B =/= 1 ) -> ( B logb B ) = 1 ) | 
						
							| 20 | 18 19 | syl |  |-  ( B e. ( RR+ \ { 1 } ) -> ( B logb B ) = 1 ) | 
						
							| 21 | 20 | adantr |  |-  ( ( B e. ( RR+ \ { 1 } ) /\ ( A e. RR+ /\ C e. RR ) ) -> ( B logb B ) = 1 ) | 
						
							| 22 | 21 | oveq2d |  |-  ( ( B e. ( RR+ \ { 1 } ) /\ ( A e. RR+ /\ C e. RR ) ) -> ( C x. ( B logb B ) ) = ( C x. 1 ) ) | 
						
							| 23 |  | ax-1rid |  |-  ( C e. RR -> ( C x. 1 ) = C ) | 
						
							| 24 | 23 | adantl |  |-  ( ( A e. RR+ /\ C e. RR ) -> ( C x. 1 ) = C ) | 
						
							| 25 | 24 | adantl |  |-  ( ( B e. ( RR+ \ { 1 } ) /\ ( A e. RR+ /\ C e. RR ) ) -> ( C x. 1 ) = C ) | 
						
							| 26 | 22 25 | eqtrd |  |-  ( ( B e. ( RR+ \ { 1 } ) /\ ( A e. RR+ /\ C e. RR ) ) -> ( C x. ( B logb B ) ) = C ) | 
						
							| 27 | 26 | oveq2d |  |-  ( ( B e. ( RR+ \ { 1 } ) /\ ( A e. RR+ /\ C e. RR ) ) -> ( ( B logb A ) + ( C x. ( B logb B ) ) ) = ( ( B logb A ) + C ) ) | 
						
							| 28 | 17 27 | eqtrd |  |-  ( ( B e. ( RR+ \ { 1 } ) /\ ( A e. RR+ /\ C e. RR ) ) -> ( B logb ( A x. ( B ^c C ) ) ) = ( ( B logb A ) + C ) ) |