| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eldifpr |
|- ( A e. ( CC \ { 0 , 1 } ) <-> ( A e. CC /\ A =/= 0 /\ A =/= 1 ) ) |
| 2 |
1
|
biimpri |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> A e. ( CC \ { 0 , 1 } ) ) |
| 3 |
|
eldifsn |
|- ( A e. ( CC \ { 0 } ) <-> ( A e. CC /\ A =/= 0 ) ) |
| 4 |
3
|
biimpri |
|- ( ( A e. CC /\ A =/= 0 ) -> A e. ( CC \ { 0 } ) ) |
| 5 |
4
|
3adant3 |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> A e. ( CC \ { 0 } ) ) |
| 6 |
|
logbval |
|- ( ( A e. ( CC \ { 0 , 1 } ) /\ A e. ( CC \ { 0 } ) ) -> ( A logb A ) = ( ( log ` A ) / ( log ` A ) ) ) |
| 7 |
2 5 6
|
syl2anc |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( A logb A ) = ( ( log ` A ) / ( log ` A ) ) ) |
| 8 |
|
logcl |
|- ( ( A e. CC /\ A =/= 0 ) -> ( log ` A ) e. CC ) |
| 9 |
8
|
3adant3 |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( log ` A ) e. CC ) |
| 10 |
|
logccne0 |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( log ` A ) =/= 0 ) |
| 11 |
9 10
|
dividd |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( ( log ` A ) / ( log ` A ) ) = 1 ) |
| 12 |
7 11
|
eqtrd |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( A logb A ) = 1 ) |