Step |
Hyp |
Ref |
Expression |
1 |
|
eldifpr |
⊢ ( 𝐴 ∈ ( ℂ ∖ { 0 , 1 } ) ↔ ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1 ) ) |
2 |
1
|
biimpri |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1 ) → 𝐴 ∈ ( ℂ ∖ { 0 , 1 } ) ) |
3 |
|
eldifsn |
⊢ ( 𝐴 ∈ ( ℂ ∖ { 0 } ) ↔ ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ) |
4 |
3
|
biimpri |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → 𝐴 ∈ ( ℂ ∖ { 0 } ) ) |
5 |
4
|
3adant3 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1 ) → 𝐴 ∈ ( ℂ ∖ { 0 } ) ) |
6 |
|
logbval |
⊢ ( ( 𝐴 ∈ ( ℂ ∖ { 0 , 1 } ) ∧ 𝐴 ∈ ( ℂ ∖ { 0 } ) ) → ( 𝐴 logb 𝐴 ) = ( ( log ‘ 𝐴 ) / ( log ‘ 𝐴 ) ) ) |
7 |
2 5 6
|
syl2anc |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1 ) → ( 𝐴 logb 𝐴 ) = ( ( log ‘ 𝐴 ) / ( log ‘ 𝐴 ) ) ) |
8 |
|
logcl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( log ‘ 𝐴 ) ∈ ℂ ) |
9 |
8
|
3adant3 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1 ) → ( log ‘ 𝐴 ) ∈ ℂ ) |
10 |
|
logccne0 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1 ) → ( log ‘ 𝐴 ) ≠ 0 ) |
11 |
9 10
|
dividd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1 ) → ( ( log ‘ 𝐴 ) / ( log ‘ 𝐴 ) ) = 1 ) |
12 |
7 11
|
eqtrd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1 ) → ( 𝐴 logb 𝐴 ) = 1 ) |