| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eldifpr |
|- ( B e. ( CC \ { 0 , 1 } ) <-> ( B e. CC /\ B =/= 0 /\ B =/= 1 ) ) |
| 2 |
|
ax-1cn |
|- 1 e. CC |
| 3 |
|
ax-1ne0 |
|- 1 =/= 0 |
| 4 |
|
eldifsn |
|- ( 1 e. ( CC \ { 0 } ) <-> ( 1 e. CC /\ 1 =/= 0 ) ) |
| 5 |
2 3 4
|
mpbir2an |
|- 1 e. ( CC \ { 0 } ) |
| 6 |
|
logbval |
|- ( ( B e. ( CC \ { 0 , 1 } ) /\ 1 e. ( CC \ { 0 } ) ) -> ( B logb 1 ) = ( ( log ` 1 ) / ( log ` B ) ) ) |
| 7 |
5 6
|
mpan2 |
|- ( B e. ( CC \ { 0 , 1 } ) -> ( B logb 1 ) = ( ( log ` 1 ) / ( log ` B ) ) ) |
| 8 |
1 7
|
sylbir |
|- ( ( B e. CC /\ B =/= 0 /\ B =/= 1 ) -> ( B logb 1 ) = ( ( log ` 1 ) / ( log ` B ) ) ) |
| 9 |
|
log1 |
|- ( log ` 1 ) = 0 |
| 10 |
9
|
oveq1i |
|- ( ( log ` 1 ) / ( log ` B ) ) = ( 0 / ( log ` B ) ) |
| 11 |
|
simp1 |
|- ( ( B e. CC /\ B =/= 0 /\ B =/= 1 ) -> B e. CC ) |
| 12 |
|
simp2 |
|- ( ( B e. CC /\ B =/= 0 /\ B =/= 1 ) -> B =/= 0 ) |
| 13 |
11 12
|
logcld |
|- ( ( B e. CC /\ B =/= 0 /\ B =/= 1 ) -> ( log ` B ) e. CC ) |
| 14 |
|
logccne0 |
|- ( ( B e. CC /\ B =/= 0 /\ B =/= 1 ) -> ( log ` B ) =/= 0 ) |
| 15 |
13 14
|
div0d |
|- ( ( B e. CC /\ B =/= 0 /\ B =/= 1 ) -> ( 0 / ( log ` B ) ) = 0 ) |
| 16 |
10 15
|
eqtrid |
|- ( ( B e. CC /\ B =/= 0 /\ B =/= 1 ) -> ( ( log ` 1 ) / ( log ` B ) ) = 0 ) |
| 17 |
8 16
|
eqtrd |
|- ( ( B e. CC /\ B =/= 0 /\ B =/= 1 ) -> ( B logb 1 ) = 0 ) |