| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ere |
|- _e e. RR |
| 2 |
1
|
recni |
|- _e e. CC |
| 3 |
|
ene0 |
|- _e =/= 0 |
| 4 |
|
ene1 |
|- _e =/= 1 |
| 5 |
|
eldifpr |
|- ( _e e. ( CC \ { 0 , 1 } ) <-> ( _e e. CC /\ _e =/= 0 /\ _e =/= 1 ) ) |
| 6 |
2 3 4 5
|
mpbir3an |
|- _e e. ( CC \ { 0 , 1 } ) |
| 7 |
|
logbval |
|- ( ( _e e. ( CC \ { 0 , 1 } ) /\ A e. ( CC \ { 0 } ) ) -> ( _e logb A ) = ( ( log ` A ) / ( log ` _e ) ) ) |
| 8 |
6 7
|
mpan |
|- ( A e. ( CC \ { 0 } ) -> ( _e logb A ) = ( ( log ` A ) / ( log ` _e ) ) ) |
| 9 |
|
loge |
|- ( log ` _e ) = 1 |
| 10 |
9
|
oveq2i |
|- ( ( log ` A ) / ( log ` _e ) ) = ( ( log ` A ) / 1 ) |
| 11 |
|
eldifsn |
|- ( A e. ( CC \ { 0 } ) <-> ( A e. CC /\ A =/= 0 ) ) |
| 12 |
|
logcl |
|- ( ( A e. CC /\ A =/= 0 ) -> ( log ` A ) e. CC ) |
| 13 |
11 12
|
sylbi |
|- ( A e. ( CC \ { 0 } ) -> ( log ` A ) e. CC ) |
| 14 |
13
|
div1d |
|- ( A e. ( CC \ { 0 } ) -> ( ( log ` A ) / 1 ) = ( log ` A ) ) |
| 15 |
10 14
|
eqtrid |
|- ( A e. ( CC \ { 0 } ) -> ( ( log ` A ) / ( log ` _e ) ) = ( log ` A ) ) |
| 16 |
8 15
|
eqtrd |
|- ( A e. ( CC \ { 0 } ) -> ( _e logb A ) = ( log ` A ) ) |