| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ere |
⊢ e ∈ ℝ |
| 2 |
1
|
recni |
⊢ e ∈ ℂ |
| 3 |
|
ene0 |
⊢ e ≠ 0 |
| 4 |
|
ene1 |
⊢ e ≠ 1 |
| 5 |
|
eldifpr |
⊢ ( e ∈ ( ℂ ∖ { 0 , 1 } ) ↔ ( e ∈ ℂ ∧ e ≠ 0 ∧ e ≠ 1 ) ) |
| 6 |
2 3 4 5
|
mpbir3an |
⊢ e ∈ ( ℂ ∖ { 0 , 1 } ) |
| 7 |
|
logbval |
⊢ ( ( e ∈ ( ℂ ∖ { 0 , 1 } ) ∧ 𝐴 ∈ ( ℂ ∖ { 0 } ) ) → ( e logb 𝐴 ) = ( ( log ‘ 𝐴 ) / ( log ‘ e ) ) ) |
| 8 |
6 7
|
mpan |
⊢ ( 𝐴 ∈ ( ℂ ∖ { 0 } ) → ( e logb 𝐴 ) = ( ( log ‘ 𝐴 ) / ( log ‘ e ) ) ) |
| 9 |
|
loge |
⊢ ( log ‘ e ) = 1 |
| 10 |
9
|
oveq2i |
⊢ ( ( log ‘ 𝐴 ) / ( log ‘ e ) ) = ( ( log ‘ 𝐴 ) / 1 ) |
| 11 |
|
eldifsn |
⊢ ( 𝐴 ∈ ( ℂ ∖ { 0 } ) ↔ ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ) |
| 12 |
|
logcl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( log ‘ 𝐴 ) ∈ ℂ ) |
| 13 |
11 12
|
sylbi |
⊢ ( 𝐴 ∈ ( ℂ ∖ { 0 } ) → ( log ‘ 𝐴 ) ∈ ℂ ) |
| 14 |
13
|
div1d |
⊢ ( 𝐴 ∈ ( ℂ ∖ { 0 } ) → ( ( log ‘ 𝐴 ) / 1 ) = ( log ‘ 𝐴 ) ) |
| 15 |
10 14
|
eqtrid |
⊢ ( 𝐴 ∈ ( ℂ ∖ { 0 } ) → ( ( log ‘ 𝐴 ) / ( log ‘ e ) ) = ( log ‘ 𝐴 ) ) |
| 16 |
8 15
|
eqtrd |
⊢ ( 𝐴 ∈ ( ℂ ∖ { 0 } ) → ( e logb 𝐴 ) = ( log ‘ 𝐴 ) ) |