Metamath Proof Explorer


Theorem elogb

Description: The general logarithm of a number to the base being Euler's constant is the natural logarithm of the number. Put another way, using _e as the base in logb is the same as log . Definition in Cohen4 p. 352. (Contributed by David A. Wheeler, 17-Oct-2017) (Revised by David A. Wheeler and AV, 16-Jun-2020)

Ref Expression
Assertion elogb A0logeA=logA

Proof

Step Hyp Ref Expression
1 ere e
2 1 recni e
3 ene0 e0
4 ene1 e1
5 eldifpr e01ee0e1
6 2 3 4 5 mpbir3an e01
7 logbval e01A0logeA=logAloge
8 6 7 mpan A0logeA=logAloge
9 loge loge=1
10 9 oveq2i logAloge=logA1
11 eldifsn A0AA0
12 logcl AA0logA
13 11 12 sylbi A0logA
14 13 div1d A0logA1=logA
15 10 14 eqtrid A0logAloge=logA
16 8 15 eqtrd A0logeA=logA