Metamath Proof Explorer


Theorem logbchbase

Description: Change of base for logarithms. Property in Cohen4 p. 367. (Contributed by AV, 11-Jun-2020)

Ref Expression
Assertion logbchbase A A 0 A 1 B B 0 B 1 X 0 log A X = log B X log B A

Proof

Step Hyp Ref Expression
1 eldifsn X 0 X X 0
2 logcl X X 0 log X
3 1 2 sylbi X 0 log X
4 3 3ad2ant3 A A 0 A 1 B B 0 B 1 X 0 log X
5 logcl A A 0 log A
6 5 3adant3 A A 0 A 1 log A
7 logccne0 A A 0 A 1 log A 0
8 6 7 jca A A 0 A 1 log A log A 0
9 8 3ad2ant1 A A 0 A 1 B B 0 B 1 X 0 log A log A 0
10 logcl B B 0 log B
11 10 3adant3 B B 0 B 1 log B
12 logccne0 B B 0 B 1 log B 0
13 11 12 jca B B 0 B 1 log B log B 0
14 13 3ad2ant2 A A 0 A 1 B B 0 B 1 X 0 log B log B 0
15 divcan7 log X log A log A 0 log B log B 0 log X log B log A log B = log X log A
16 4 9 14 15 syl3anc A A 0 A 1 B B 0 B 1 X 0 log X log B log A log B = log X log A
17 eldifpr B 0 1 B B 0 B 1
18 logbval B 0 1 X 0 log B X = log X log B
19 17 18 sylanbr B B 0 B 1 X 0 log B X = log X log B
20 19 3adant1 A A 0 A 1 B B 0 B 1 X 0 log B X = log X log B
21 17 biimpri B B 0 B 1 B 0 1
22 eldifsn A 0 A A 0
23 22 biimpri A A 0 A 0
24 23 3adant3 A A 0 A 1 A 0
25 logbval B 0 1 A 0 log B A = log A log B
26 21 24 25 syl2anr A A 0 A 1 B B 0 B 1 log B A = log A log B
27 26 3adant3 A A 0 A 1 B B 0 B 1 X 0 log B A = log A log B
28 20 27 oveq12d A A 0 A 1 B B 0 B 1 X 0 log B X log B A = log X log B log A log B
29 eldifpr A 0 1 A A 0 A 1
30 logbval A 0 1 X 0 log A X = log X log A
31 29 30 sylanbr A A 0 A 1 X 0 log A X = log X log A
32 31 3adant2 A A 0 A 1 B B 0 B 1 X 0 log A X = log X log A
33 16 28 32 3eqtr4rd A A 0 A 1 B B 0 B 1 X 0 log A X = log B X log B A