Metamath Proof Explorer


Theorem logccne0

Description: The logarithm isn't 0 if its argument isn't 0 or 1. (Contributed by David A. Wheeler, 17-Jul-2017)

Ref Expression
Assertion logccne0 AA0A1logA0

Proof

Step Hyp Ref Expression
1 simp3 AA0A1A1
2 1 neneqd AA0A1¬A=1
3 logeq0im1 AA0logA=0A=1
4 3 3expia AA0logA=0A=1
5 4 3adant3 AA0A1logA=0A=1
6 2 5 mtod AA0A1¬logA=0
7 6 neqned AA0A1logA0