Metamath Proof Explorer


Theorem logbchbase

Description: Change of base for logarithms. Property in Cohen4 p. 367. (Contributed by AV, 11-Jun-2020)

Ref Expression
Assertion logbchbase
|- ( ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) /\ ( B e. CC /\ B =/= 0 /\ B =/= 1 ) /\ X e. ( CC \ { 0 } ) ) -> ( A logb X ) = ( ( B logb X ) / ( B logb A ) ) )

Proof

Step Hyp Ref Expression
1 eldifsn
 |-  ( X e. ( CC \ { 0 } ) <-> ( X e. CC /\ X =/= 0 ) )
2 logcl
 |-  ( ( X e. CC /\ X =/= 0 ) -> ( log ` X ) e. CC )
3 1 2 sylbi
 |-  ( X e. ( CC \ { 0 } ) -> ( log ` X ) e. CC )
4 3 3ad2ant3
 |-  ( ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) /\ ( B e. CC /\ B =/= 0 /\ B =/= 1 ) /\ X e. ( CC \ { 0 } ) ) -> ( log ` X ) e. CC )
5 logcl
 |-  ( ( A e. CC /\ A =/= 0 ) -> ( log ` A ) e. CC )
6 5 3adant3
 |-  ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( log ` A ) e. CC )
7 logccne0
 |-  ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( log ` A ) =/= 0 )
8 6 7 jca
 |-  ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( ( log ` A ) e. CC /\ ( log ` A ) =/= 0 ) )
9 8 3ad2ant1
 |-  ( ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) /\ ( B e. CC /\ B =/= 0 /\ B =/= 1 ) /\ X e. ( CC \ { 0 } ) ) -> ( ( log ` A ) e. CC /\ ( log ` A ) =/= 0 ) )
10 logcl
 |-  ( ( B e. CC /\ B =/= 0 ) -> ( log ` B ) e. CC )
11 10 3adant3
 |-  ( ( B e. CC /\ B =/= 0 /\ B =/= 1 ) -> ( log ` B ) e. CC )
12 logccne0
 |-  ( ( B e. CC /\ B =/= 0 /\ B =/= 1 ) -> ( log ` B ) =/= 0 )
13 11 12 jca
 |-  ( ( B e. CC /\ B =/= 0 /\ B =/= 1 ) -> ( ( log ` B ) e. CC /\ ( log ` B ) =/= 0 ) )
14 13 3ad2ant2
 |-  ( ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) /\ ( B e. CC /\ B =/= 0 /\ B =/= 1 ) /\ X e. ( CC \ { 0 } ) ) -> ( ( log ` B ) e. CC /\ ( log ` B ) =/= 0 ) )
15 divcan7
 |-  ( ( ( log ` X ) e. CC /\ ( ( log ` A ) e. CC /\ ( log ` A ) =/= 0 ) /\ ( ( log ` B ) e. CC /\ ( log ` B ) =/= 0 ) ) -> ( ( ( log ` X ) / ( log ` B ) ) / ( ( log ` A ) / ( log ` B ) ) ) = ( ( log ` X ) / ( log ` A ) ) )
16 4 9 14 15 syl3anc
 |-  ( ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) /\ ( B e. CC /\ B =/= 0 /\ B =/= 1 ) /\ X e. ( CC \ { 0 } ) ) -> ( ( ( log ` X ) / ( log ` B ) ) / ( ( log ` A ) / ( log ` B ) ) ) = ( ( log ` X ) / ( log ` A ) ) )
17 eldifpr
 |-  ( B e. ( CC \ { 0 , 1 } ) <-> ( B e. CC /\ B =/= 0 /\ B =/= 1 ) )
18 logbval
 |-  ( ( B e. ( CC \ { 0 , 1 } ) /\ X e. ( CC \ { 0 } ) ) -> ( B logb X ) = ( ( log ` X ) / ( log ` B ) ) )
19 17 18 sylanbr
 |-  ( ( ( B e. CC /\ B =/= 0 /\ B =/= 1 ) /\ X e. ( CC \ { 0 } ) ) -> ( B logb X ) = ( ( log ` X ) / ( log ` B ) ) )
20 19 3adant1
 |-  ( ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) /\ ( B e. CC /\ B =/= 0 /\ B =/= 1 ) /\ X e. ( CC \ { 0 } ) ) -> ( B logb X ) = ( ( log ` X ) / ( log ` B ) ) )
21 17 biimpri
 |-  ( ( B e. CC /\ B =/= 0 /\ B =/= 1 ) -> B e. ( CC \ { 0 , 1 } ) )
22 eldifsn
 |-  ( A e. ( CC \ { 0 } ) <-> ( A e. CC /\ A =/= 0 ) )
23 22 biimpri
 |-  ( ( A e. CC /\ A =/= 0 ) -> A e. ( CC \ { 0 } ) )
24 23 3adant3
 |-  ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> A e. ( CC \ { 0 } ) )
25 logbval
 |-  ( ( B e. ( CC \ { 0 , 1 } ) /\ A e. ( CC \ { 0 } ) ) -> ( B logb A ) = ( ( log ` A ) / ( log ` B ) ) )
26 21 24 25 syl2anr
 |-  ( ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) /\ ( B e. CC /\ B =/= 0 /\ B =/= 1 ) ) -> ( B logb A ) = ( ( log ` A ) / ( log ` B ) ) )
27 26 3adant3
 |-  ( ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) /\ ( B e. CC /\ B =/= 0 /\ B =/= 1 ) /\ X e. ( CC \ { 0 } ) ) -> ( B logb A ) = ( ( log ` A ) / ( log ` B ) ) )
28 20 27 oveq12d
 |-  ( ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) /\ ( B e. CC /\ B =/= 0 /\ B =/= 1 ) /\ X e. ( CC \ { 0 } ) ) -> ( ( B logb X ) / ( B logb A ) ) = ( ( ( log ` X ) / ( log ` B ) ) / ( ( log ` A ) / ( log ` B ) ) ) )
29 eldifpr
 |-  ( A e. ( CC \ { 0 , 1 } ) <-> ( A e. CC /\ A =/= 0 /\ A =/= 1 ) )
30 logbval
 |-  ( ( A e. ( CC \ { 0 , 1 } ) /\ X e. ( CC \ { 0 } ) ) -> ( A logb X ) = ( ( log ` X ) / ( log ` A ) ) )
31 29 30 sylanbr
 |-  ( ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) /\ X e. ( CC \ { 0 } ) ) -> ( A logb X ) = ( ( log ` X ) / ( log ` A ) ) )
32 31 3adant2
 |-  ( ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) /\ ( B e. CC /\ B =/= 0 /\ B =/= 1 ) /\ X e. ( CC \ { 0 } ) ) -> ( A logb X ) = ( ( log ` X ) / ( log ` A ) ) )
33 16 28 32 3eqtr4rd
 |-  ( ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) /\ ( B e. CC /\ B =/= 0 /\ B =/= 1 ) /\ X e. ( CC \ { 0 } ) ) -> ( A logb X ) = ( ( B logb X ) / ( B logb A ) ) )