Metamath Proof Explorer


Theorem sylanbr

Description: A syllogism inference. (Contributed by NM, 18-May-1994)

Ref Expression
Hypotheses sylanbr.1
|- ( ps <-> ph )
sylanbr.2
|- ( ( ps /\ ch ) -> th )
Assertion sylanbr
|- ( ( ph /\ ch ) -> th )

Proof

Step Hyp Ref Expression
1 sylanbr.1
 |-  ( ps <-> ph )
2 sylanbr.2
 |-  ( ( ps /\ ch ) -> th )
3 1 biimpri
 |-  ( ph -> ps )
4 3 2 sylan
 |-  ( ( ph /\ ch ) -> th )