Metamath Proof Explorer


Theorem sylanbr

Description: A syllogism inference. (Contributed by NM, 18-May-1994)

Ref Expression
Hypotheses sylanbr.1 ( 𝜓𝜑 )
sylanbr.2 ( ( 𝜓𝜒 ) → 𝜃 )
Assertion sylanbr ( ( 𝜑𝜒 ) → 𝜃 )

Proof

Step Hyp Ref Expression
1 sylanbr.1 ( 𝜓𝜑 )
2 sylanbr.2 ( ( 𝜓𝜒 ) → 𝜃 )
3 1 biimpri ( 𝜑𝜓 )
4 3 2 sylan ( ( 𝜑𝜒 ) → 𝜃 )