Metamath Proof Explorer


Definition df-logb

Description: Define the logb operator. This is the logarithm generalized to an arbitrary base. It can be used as ( B logb X ) for "log base B of X". In the most common traditional notation, base B is a subscript of "log". The definition is according to Wikipedia "Complex logarithm": https://en.wikipedia.org/wiki/Complex_logarithm#Logarithms_to_other_bases (10-Jun-2020). (Contributed by David A. Wheeler, 21-Jan-2017)

Ref Expression
Assertion df-logb logb=x01,y0logylogx

Detailed syntax breakdown

Step Hyp Ref Expression
0 clogb classlogb
1 vx setvarx
2 cc class
3 cc0 class0
4 c1 class1
5 3 4 cpr class01
6 2 5 cdif class01
7 vy setvary
8 3 csn class0
9 2 8 cdif class0
10 clog classlog
11 7 cv setvary
12 11 10 cfv classlogy
13 cdiv class÷
14 1 cv setvarx
15 14 10 cfv classlogx
16 12 15 13 co classlogylogx
17 1 7 6 9 16 cmpo classx01,y0logylogx
18 0 17 wceq wfflogb=x01,y0logylogx