| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rpcn | ⊢ ( 𝐵  ∈  ℝ+  →  𝐵  ∈  ℂ ) | 
						
							| 2 | 1 | adantr | ⊢ ( ( 𝐵  ∈  ℝ+  ∧  𝐵  ≠  1 )  →  𝐵  ∈  ℂ ) | 
						
							| 3 |  | rpne0 | ⊢ ( 𝐵  ∈  ℝ+  →  𝐵  ≠  0 ) | 
						
							| 4 | 3 | adantr | ⊢ ( ( 𝐵  ∈  ℝ+  ∧  𝐵  ≠  1 )  →  𝐵  ≠  0 ) | 
						
							| 5 |  | simpr | ⊢ ( ( 𝐵  ∈  ℝ+  ∧  𝐵  ≠  1 )  →  𝐵  ≠  1 ) | 
						
							| 6 | 2 4 5 | 3jca | ⊢ ( ( 𝐵  ∈  ℝ+  ∧  𝐵  ≠  1 )  →  ( 𝐵  ∈  ℂ  ∧  𝐵  ≠  0  ∧  𝐵  ≠  1 ) ) | 
						
							| 7 |  | eldifsn | ⊢ ( 𝐵  ∈  ( ℝ+  ∖  { 1 } )  ↔  ( 𝐵  ∈  ℝ+  ∧  𝐵  ≠  1 ) ) | 
						
							| 8 |  | eldifpr | ⊢ ( 𝐵  ∈  ( ℂ  ∖  { 0 ,  1 } )  ↔  ( 𝐵  ∈  ℂ  ∧  𝐵  ≠  0  ∧  𝐵  ≠  1 ) ) | 
						
							| 9 | 6 7 8 | 3imtr4i | ⊢ ( 𝐵  ∈  ( ℝ+  ∖  { 1 } )  →  𝐵  ∈  ( ℂ  ∖  { 0 ,  1 } ) ) | 
						
							| 10 | 9 | adantr | ⊢ ( ( 𝐵  ∈  ( ℝ+  ∖  { 1 } )  ∧  ( 𝐴  ∈  ℝ+  ∧  𝐶  ∈  ℝ ) )  →  𝐵  ∈  ( ℂ  ∖  { 0 ,  1 } ) ) | 
						
							| 11 |  | simprl | ⊢ ( ( 𝐵  ∈  ( ℝ+  ∖  { 1 } )  ∧  ( 𝐴  ∈  ℝ+  ∧  𝐶  ∈  ℝ ) )  →  𝐴  ∈  ℝ+ ) | 
						
							| 12 |  | eldifi | ⊢ ( 𝐵  ∈  ( ℝ+  ∖  { 1 } )  →  𝐵  ∈  ℝ+ ) | 
						
							| 13 | 12 | adantr | ⊢ ( ( 𝐵  ∈  ( ℝ+  ∖  { 1 } )  ∧  ( 𝐴  ∈  ℝ+  ∧  𝐶  ∈  ℝ ) )  →  𝐵  ∈  ℝ+ ) | 
						
							| 14 |  | simpr | ⊢ ( ( 𝐴  ∈  ℝ+  ∧  𝐶  ∈  ℝ )  →  𝐶  ∈  ℝ ) | 
						
							| 15 | 14 | adantl | ⊢ ( ( 𝐵  ∈  ( ℝ+  ∖  { 1 } )  ∧  ( 𝐴  ∈  ℝ+  ∧  𝐶  ∈  ℝ ) )  →  𝐶  ∈  ℝ ) | 
						
							| 16 |  | relogbmulexp | ⊢ ( ( 𝐵  ∈  ( ℂ  ∖  { 0 ,  1 } )  ∧  ( 𝐴  ∈  ℝ+  ∧  𝐵  ∈  ℝ+  ∧  𝐶  ∈  ℝ ) )  →  ( 𝐵  logb  ( 𝐴  ·  ( 𝐵 ↑𝑐 𝐶 ) ) )  =  ( ( 𝐵  logb  𝐴 )  +  ( 𝐶  ·  ( 𝐵  logb  𝐵 ) ) ) ) | 
						
							| 17 | 10 11 13 15 16 | syl13anc | ⊢ ( ( 𝐵  ∈  ( ℝ+  ∖  { 1 } )  ∧  ( 𝐴  ∈  ℝ+  ∧  𝐶  ∈  ℝ ) )  →  ( 𝐵  logb  ( 𝐴  ·  ( 𝐵 ↑𝑐 𝐶 ) ) )  =  ( ( 𝐵  logb  𝐴 )  +  ( 𝐶  ·  ( 𝐵  logb  𝐵 ) ) ) ) | 
						
							| 18 | 7 6 | sylbi | ⊢ ( 𝐵  ∈  ( ℝ+  ∖  { 1 } )  →  ( 𝐵  ∈  ℂ  ∧  𝐵  ≠  0  ∧  𝐵  ≠  1 ) ) | 
						
							| 19 |  | logbid1 | ⊢ ( ( 𝐵  ∈  ℂ  ∧  𝐵  ≠  0  ∧  𝐵  ≠  1 )  →  ( 𝐵  logb  𝐵 )  =  1 ) | 
						
							| 20 | 18 19 | syl | ⊢ ( 𝐵  ∈  ( ℝ+  ∖  { 1 } )  →  ( 𝐵  logb  𝐵 )  =  1 ) | 
						
							| 21 | 20 | adantr | ⊢ ( ( 𝐵  ∈  ( ℝ+  ∖  { 1 } )  ∧  ( 𝐴  ∈  ℝ+  ∧  𝐶  ∈  ℝ ) )  →  ( 𝐵  logb  𝐵 )  =  1 ) | 
						
							| 22 | 21 | oveq2d | ⊢ ( ( 𝐵  ∈  ( ℝ+  ∖  { 1 } )  ∧  ( 𝐴  ∈  ℝ+  ∧  𝐶  ∈  ℝ ) )  →  ( 𝐶  ·  ( 𝐵  logb  𝐵 ) )  =  ( 𝐶  ·  1 ) ) | 
						
							| 23 |  | ax-1rid | ⊢ ( 𝐶  ∈  ℝ  →  ( 𝐶  ·  1 )  =  𝐶 ) | 
						
							| 24 | 23 | adantl | ⊢ ( ( 𝐴  ∈  ℝ+  ∧  𝐶  ∈  ℝ )  →  ( 𝐶  ·  1 )  =  𝐶 ) | 
						
							| 25 | 24 | adantl | ⊢ ( ( 𝐵  ∈  ( ℝ+  ∖  { 1 } )  ∧  ( 𝐴  ∈  ℝ+  ∧  𝐶  ∈  ℝ ) )  →  ( 𝐶  ·  1 )  =  𝐶 ) | 
						
							| 26 | 22 25 | eqtrd | ⊢ ( ( 𝐵  ∈  ( ℝ+  ∖  { 1 } )  ∧  ( 𝐴  ∈  ℝ+  ∧  𝐶  ∈  ℝ ) )  →  ( 𝐶  ·  ( 𝐵  logb  𝐵 ) )  =  𝐶 ) | 
						
							| 27 | 26 | oveq2d | ⊢ ( ( 𝐵  ∈  ( ℝ+  ∖  { 1 } )  ∧  ( 𝐴  ∈  ℝ+  ∧  𝐶  ∈  ℝ ) )  →  ( ( 𝐵  logb  𝐴 )  +  ( 𝐶  ·  ( 𝐵  logb  𝐵 ) ) )  =  ( ( 𝐵  logb  𝐴 )  +  𝐶 ) ) | 
						
							| 28 | 17 27 | eqtrd | ⊢ ( ( 𝐵  ∈  ( ℝ+  ∖  { 1 } )  ∧  ( 𝐴  ∈  ℝ+  ∧  𝐶  ∈  ℝ ) )  →  ( 𝐵  logb  ( 𝐴  ·  ( 𝐵 ↑𝑐 𝐶 ) ) )  =  ( ( 𝐵  logb  𝐴 )  +  𝐶 ) ) |