Step |
Hyp |
Ref |
Expression |
1 |
|
rpcn |
⊢ ( 𝐵 ∈ ℝ+ → 𝐵 ∈ ℂ ) |
2 |
1
|
adantr |
⊢ ( ( 𝐵 ∈ ℝ+ ∧ 𝐵 ≠ 1 ) → 𝐵 ∈ ℂ ) |
3 |
|
rpne0 |
⊢ ( 𝐵 ∈ ℝ+ → 𝐵 ≠ 0 ) |
4 |
3
|
adantr |
⊢ ( ( 𝐵 ∈ ℝ+ ∧ 𝐵 ≠ 1 ) → 𝐵 ≠ 0 ) |
5 |
|
simpr |
⊢ ( ( 𝐵 ∈ ℝ+ ∧ 𝐵 ≠ 1 ) → 𝐵 ≠ 1 ) |
6 |
2 4 5
|
3jca |
⊢ ( ( 𝐵 ∈ ℝ+ ∧ 𝐵 ≠ 1 ) → ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ∧ 𝐵 ≠ 1 ) ) |
7 |
|
eldifsn |
⊢ ( 𝐵 ∈ ( ℝ+ ∖ { 1 } ) ↔ ( 𝐵 ∈ ℝ+ ∧ 𝐵 ≠ 1 ) ) |
8 |
|
eldifpr |
⊢ ( 𝐵 ∈ ( ℂ ∖ { 0 , 1 } ) ↔ ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ∧ 𝐵 ≠ 1 ) ) |
9 |
6 7 8
|
3imtr4i |
⊢ ( 𝐵 ∈ ( ℝ+ ∖ { 1 } ) → 𝐵 ∈ ( ℂ ∖ { 0 , 1 } ) ) |
10 |
9
|
adantr |
⊢ ( ( 𝐵 ∈ ( ℝ+ ∖ { 1 } ) ∧ ( 𝐴 ∈ ℝ+ ∧ 𝐶 ∈ ℝ ) ) → 𝐵 ∈ ( ℂ ∖ { 0 , 1 } ) ) |
11 |
|
simprl |
⊢ ( ( 𝐵 ∈ ( ℝ+ ∖ { 1 } ) ∧ ( 𝐴 ∈ ℝ+ ∧ 𝐶 ∈ ℝ ) ) → 𝐴 ∈ ℝ+ ) |
12 |
|
eldifi |
⊢ ( 𝐵 ∈ ( ℝ+ ∖ { 1 } ) → 𝐵 ∈ ℝ+ ) |
13 |
12
|
adantr |
⊢ ( ( 𝐵 ∈ ( ℝ+ ∖ { 1 } ) ∧ ( 𝐴 ∈ ℝ+ ∧ 𝐶 ∈ ℝ ) ) → 𝐵 ∈ ℝ+ ) |
14 |
|
simpr |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐶 ∈ ℝ ) → 𝐶 ∈ ℝ ) |
15 |
14
|
adantl |
⊢ ( ( 𝐵 ∈ ( ℝ+ ∖ { 1 } ) ∧ ( 𝐴 ∈ ℝ+ ∧ 𝐶 ∈ ℝ ) ) → 𝐶 ∈ ℝ ) |
16 |
|
relogbmulexp |
⊢ ( ( 𝐵 ∈ ( ℂ ∖ { 0 , 1 } ) ∧ ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ∧ 𝐶 ∈ ℝ ) ) → ( 𝐵 logb ( 𝐴 · ( 𝐵 ↑𝑐 𝐶 ) ) ) = ( ( 𝐵 logb 𝐴 ) + ( 𝐶 · ( 𝐵 logb 𝐵 ) ) ) ) |
17 |
10 11 13 15 16
|
syl13anc |
⊢ ( ( 𝐵 ∈ ( ℝ+ ∖ { 1 } ) ∧ ( 𝐴 ∈ ℝ+ ∧ 𝐶 ∈ ℝ ) ) → ( 𝐵 logb ( 𝐴 · ( 𝐵 ↑𝑐 𝐶 ) ) ) = ( ( 𝐵 logb 𝐴 ) + ( 𝐶 · ( 𝐵 logb 𝐵 ) ) ) ) |
18 |
7 6
|
sylbi |
⊢ ( 𝐵 ∈ ( ℝ+ ∖ { 1 } ) → ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ∧ 𝐵 ≠ 1 ) ) |
19 |
|
logbid1 |
⊢ ( ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ∧ 𝐵 ≠ 1 ) → ( 𝐵 logb 𝐵 ) = 1 ) |
20 |
18 19
|
syl |
⊢ ( 𝐵 ∈ ( ℝ+ ∖ { 1 } ) → ( 𝐵 logb 𝐵 ) = 1 ) |
21 |
20
|
adantr |
⊢ ( ( 𝐵 ∈ ( ℝ+ ∖ { 1 } ) ∧ ( 𝐴 ∈ ℝ+ ∧ 𝐶 ∈ ℝ ) ) → ( 𝐵 logb 𝐵 ) = 1 ) |
22 |
21
|
oveq2d |
⊢ ( ( 𝐵 ∈ ( ℝ+ ∖ { 1 } ) ∧ ( 𝐴 ∈ ℝ+ ∧ 𝐶 ∈ ℝ ) ) → ( 𝐶 · ( 𝐵 logb 𝐵 ) ) = ( 𝐶 · 1 ) ) |
23 |
|
ax-1rid |
⊢ ( 𝐶 ∈ ℝ → ( 𝐶 · 1 ) = 𝐶 ) |
24 |
23
|
adantl |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐶 ∈ ℝ ) → ( 𝐶 · 1 ) = 𝐶 ) |
25 |
24
|
adantl |
⊢ ( ( 𝐵 ∈ ( ℝ+ ∖ { 1 } ) ∧ ( 𝐴 ∈ ℝ+ ∧ 𝐶 ∈ ℝ ) ) → ( 𝐶 · 1 ) = 𝐶 ) |
26 |
22 25
|
eqtrd |
⊢ ( ( 𝐵 ∈ ( ℝ+ ∖ { 1 } ) ∧ ( 𝐴 ∈ ℝ+ ∧ 𝐶 ∈ ℝ ) ) → ( 𝐶 · ( 𝐵 logb 𝐵 ) ) = 𝐶 ) |
27 |
26
|
oveq2d |
⊢ ( ( 𝐵 ∈ ( ℝ+ ∖ { 1 } ) ∧ ( 𝐴 ∈ ℝ+ ∧ 𝐶 ∈ ℝ ) ) → ( ( 𝐵 logb 𝐴 ) + ( 𝐶 · ( 𝐵 logb 𝐵 ) ) ) = ( ( 𝐵 logb 𝐴 ) + 𝐶 ) ) |
28 |
17 27
|
eqtrd |
⊢ ( ( 𝐵 ∈ ( ℝ+ ∖ { 1 } ) ∧ ( 𝐴 ∈ ℝ+ ∧ 𝐶 ∈ ℝ ) ) → ( 𝐵 logb ( 𝐴 · ( 𝐵 ↑𝑐 𝐶 ) ) ) = ( ( 𝐵 logb 𝐴 ) + 𝐶 ) ) |