Metamath Proof Explorer


Theorem relogbmulbexp

Description: The logarithm of the product of a positive real number and the base to the power of a real number is the logarithm of the positive real number plus the real number. (Contributed by AV, 29-May-2020)

Ref Expression
Assertion relogbmulbexp B+1A+ClogBABC=logBA+C

Proof

Step Hyp Ref Expression
1 rpcn B+B
2 1 adantr B+B1B
3 rpne0 B+B0
4 3 adantr B+B1B0
5 simpr B+B1B1
6 2 4 5 3jca B+B1BB0B1
7 eldifsn B+1B+B1
8 eldifpr B01BB0B1
9 6 7 8 3imtr4i B+1B01
10 9 adantr B+1A+CB01
11 simprl B+1A+CA+
12 eldifi B+1B+
13 12 adantr B+1A+CB+
14 simpr A+CC
15 14 adantl B+1A+CC
16 relogbmulexp B01A+B+ClogBABC=logBA+ClogBB
17 10 11 13 15 16 syl13anc B+1A+ClogBABC=logBA+ClogBB
18 7 6 sylbi B+1BB0B1
19 logbid1 BB0B1logBB=1
20 18 19 syl B+1logBB=1
21 20 adantr B+1A+ClogBB=1
22 21 oveq2d B+1A+CClogBB=C1
23 ax-1rid CC1=C
24 23 adantl A+CC1=C
25 24 adantl B+1A+CC1=C
26 22 25 eqtrd B+1A+CClogBB=C
27 26 oveq2d B+1A+ClogBA+ClogBB=logBA+C
28 17 27 eqtrd B+1A+ClogBABC=logBA+C