Metamath Proof Explorer


Theorem relogbmulexp

Description: The logarithm of the product of a positive real and a positive real number to the power of a real number is the sum of the logarithm of the first real number and the scaled logarithm of the second real number. (Contributed by AV, 29-May-2020)

Ref Expression
Assertion relogbmulexp B01A+C+ElogBACE=logBA+ElogBC

Proof

Step Hyp Ref Expression
1 simp1 A+C+EA+
2 rpcxpcl C+ECE+
3 2 3adant1 A+C+ECE+
4 1 3 jca A+C+EA+CE+
5 relogbmul B01A+CE+logBACE=logBA+logBCE
6 4 5 sylan2 B01A+C+ElogBACE=logBA+logBCE
7 relogbreexp B01C+ElogBCE=ElogBC
8 7 3adant3r1 B01A+C+ElogBCE=ElogBC
9 8 oveq2d B01A+C+ElogBA+logBCE=logBA+ElogBC
10 6 9 eqtrd B01A+C+ElogBACE=logBA+ElogBC