Metamath Proof Explorer


Theorem relogbdiv

Description: The logarithm of the quotient of two positive real numbers is the difference of logarithms. Property 3 of Cohen4 p. 361. (Contributed by AV, 29-May-2020)

Ref Expression
Assertion relogbdiv B01A+C+logBAC=logBAlogBC

Proof

Step Hyp Ref Expression
1 neg1rr 1
2 relogbmulexp B01A+C+1logBAC1=logBA+-1logBC
3 1 2 mp3anr3 B01A+C+logBAC1=logBA+-1logBC
4 rpcn A+A
5 4 adantr A+C+A
6 rpcn C+C
7 6 adantl A+C+C
8 rpne0 C+C0
9 8 adantl A+C+C0
10 5 7 9 divrecd A+C+AC=A1C
11 1cnd C+1
12 6 8 11 cxpnegd C+C1=1C1
13 6 cxp1d C+C1=C
14 13 oveq2d C+1C1=1C
15 12 14 eqtrd C+C1=1C
16 15 adantl A+C+C1=1C
17 16 oveq2d A+C+AC1=A1C
18 10 17 eqtr4d A+C+AC=AC1
19 18 adantl B01A+C+AC=AC1
20 19 oveq2d B01A+C+logBAC=logBAC1
21 rpcndif0 C+C0
22 21 adantl A+C+C0
23 logbcl B01C0logBC
24 22 23 sylan2 B01A+C+logBC
25 mulm1 logBC-1logBC=logBC
26 25 oveq2d logBClogBA+-1logBC=logBA+logBC
27 24 26 syl B01A+C+logBA+-1logBC=logBA+logBC
28 rpcndif0 A+A0
29 28 adantr A+C+A0
30 logbcl B01A0logBA
31 29 30 sylan2 B01A+C+logBA
32 31 24 negsubd B01A+C+logBA+logBC=logBAlogBC
33 27 32 eqtr2d B01A+C+logBAlogBC=logBA+-1logBC
34 3 20 33 3eqtr4d B01A+C+logBAC=logBAlogBC