Metamath Proof Explorer


Theorem logbcl

Description: General logarithm closure. (Contributed by David A. Wheeler, 17-Jul-2017)

Ref Expression
Assertion logbcl B01X0logBX

Proof

Step Hyp Ref Expression
1 logbval B01X0logBX=logXlogB
2 eldifsn X0XX0
3 logcl XX0logX
4 2 3 sylbi X0logX
5 4 adantl B01X0logX
6 eldifi B01B
7 eldifpr B01BB0B1
8 7 simp2bi B01B0
9 6 8 logcld B01logB
10 9 adantr B01X0logB
11 logccne0 BB0B1logB0
12 7 11 sylbi B01logB0
13 12 adantr B01X0logB0
14 5 10 13 divcld B01X0logXlogB
15 1 14 eqeltrd B01X0logBX