| Step |
Hyp |
Ref |
Expression |
| 1 |
|
logbval |
⊢ ( ( 𝐵 ∈ ( ℂ ∖ { 0 , 1 } ) ∧ 𝑋 ∈ ( ℂ ∖ { 0 } ) ) → ( 𝐵 logb 𝑋 ) = ( ( log ‘ 𝑋 ) / ( log ‘ 𝐵 ) ) ) |
| 2 |
|
eldifsn |
⊢ ( 𝑋 ∈ ( ℂ ∖ { 0 } ) ↔ ( 𝑋 ∈ ℂ ∧ 𝑋 ≠ 0 ) ) |
| 3 |
|
logcl |
⊢ ( ( 𝑋 ∈ ℂ ∧ 𝑋 ≠ 0 ) → ( log ‘ 𝑋 ) ∈ ℂ ) |
| 4 |
2 3
|
sylbi |
⊢ ( 𝑋 ∈ ( ℂ ∖ { 0 } ) → ( log ‘ 𝑋 ) ∈ ℂ ) |
| 5 |
4
|
adantl |
⊢ ( ( 𝐵 ∈ ( ℂ ∖ { 0 , 1 } ) ∧ 𝑋 ∈ ( ℂ ∖ { 0 } ) ) → ( log ‘ 𝑋 ) ∈ ℂ ) |
| 6 |
|
eldifi |
⊢ ( 𝐵 ∈ ( ℂ ∖ { 0 , 1 } ) → 𝐵 ∈ ℂ ) |
| 7 |
|
eldifpr |
⊢ ( 𝐵 ∈ ( ℂ ∖ { 0 , 1 } ) ↔ ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ∧ 𝐵 ≠ 1 ) ) |
| 8 |
7
|
simp2bi |
⊢ ( 𝐵 ∈ ( ℂ ∖ { 0 , 1 } ) → 𝐵 ≠ 0 ) |
| 9 |
6 8
|
logcld |
⊢ ( 𝐵 ∈ ( ℂ ∖ { 0 , 1 } ) → ( log ‘ 𝐵 ) ∈ ℂ ) |
| 10 |
9
|
adantr |
⊢ ( ( 𝐵 ∈ ( ℂ ∖ { 0 , 1 } ) ∧ 𝑋 ∈ ( ℂ ∖ { 0 } ) ) → ( log ‘ 𝐵 ) ∈ ℂ ) |
| 11 |
|
logccne0 |
⊢ ( ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ∧ 𝐵 ≠ 1 ) → ( log ‘ 𝐵 ) ≠ 0 ) |
| 12 |
7 11
|
sylbi |
⊢ ( 𝐵 ∈ ( ℂ ∖ { 0 , 1 } ) → ( log ‘ 𝐵 ) ≠ 0 ) |
| 13 |
12
|
adantr |
⊢ ( ( 𝐵 ∈ ( ℂ ∖ { 0 , 1 } ) ∧ 𝑋 ∈ ( ℂ ∖ { 0 } ) ) → ( log ‘ 𝐵 ) ≠ 0 ) |
| 14 |
5 10 13
|
divcld |
⊢ ( ( 𝐵 ∈ ( ℂ ∖ { 0 , 1 } ) ∧ 𝑋 ∈ ( ℂ ∖ { 0 } ) ) → ( ( log ‘ 𝑋 ) / ( log ‘ 𝐵 ) ) ∈ ℂ ) |
| 15 |
1 14
|
eqeltrd |
⊢ ( ( 𝐵 ∈ ( ℂ ∖ { 0 , 1 } ) ∧ 𝑋 ∈ ( ℂ ∖ { 0 } ) ) → ( 𝐵 logb 𝑋 ) ∈ ℂ ) |