| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eldifsn | ⊢ ( 𝐵  ∈  ( ℝ+  ∖  { 1 } )  ↔  ( 𝐵  ∈  ℝ+  ∧  𝐵  ≠  1 ) ) | 
						
							| 2 |  | rpcn | ⊢ ( 𝐵  ∈  ℝ+  →  𝐵  ∈  ℂ ) | 
						
							| 3 | 2 | adantr | ⊢ ( ( 𝐵  ∈  ℝ+  ∧  𝐵  ≠  1 )  →  𝐵  ∈  ℂ ) | 
						
							| 4 |  | rpne0 | ⊢ ( 𝐵  ∈  ℝ+  →  𝐵  ≠  0 ) | 
						
							| 5 | 4 | adantr | ⊢ ( ( 𝐵  ∈  ℝ+  ∧  𝐵  ≠  1 )  →  𝐵  ≠  0 ) | 
						
							| 6 |  | simpr | ⊢ ( ( 𝐵  ∈  ℝ+  ∧  𝐵  ≠  1 )  →  𝐵  ≠  1 ) | 
						
							| 7 | 3 5 6 | 3jca | ⊢ ( ( 𝐵  ∈  ℝ+  ∧  𝐵  ≠  1 )  →  ( 𝐵  ∈  ℂ  ∧  𝐵  ≠  0  ∧  𝐵  ≠  1 ) ) | 
						
							| 8 | 1 7 | sylbi | ⊢ ( 𝐵  ∈  ( ℝ+  ∖  { 1 } )  →  ( 𝐵  ∈  ℂ  ∧  𝐵  ≠  0  ∧  𝐵  ≠  1 ) ) | 
						
							| 9 |  | eldifpr | ⊢ ( 𝐵  ∈  ( ℂ  ∖  { 0 ,  1 } )  ↔  ( 𝐵  ∈  ℂ  ∧  𝐵  ≠  0  ∧  𝐵  ≠  1 ) ) | 
						
							| 10 | 8 9 | sylibr | ⊢ ( 𝐵  ∈  ( ℝ+  ∖  { 1 } )  →  𝐵  ∈  ( ℂ  ∖  { 0 ,  1 } ) ) | 
						
							| 11 | 10 | adantr | ⊢ ( ( 𝐵  ∈  ( ℝ+  ∖  { 1 } )  ∧  𝐴  ∈  ℝ+ )  →  𝐵  ∈  ( ℂ  ∖  { 0 ,  1 } ) ) | 
						
							| 12 |  | simpr | ⊢ ( ( 𝐵  ∈  ( ℝ+  ∖  { 1 } )  ∧  𝐴  ∈  ℝ+ )  →  𝐴  ∈  ℝ+ ) | 
						
							| 13 |  | eldifi | ⊢ ( 𝐵  ∈  ( ℝ+  ∖  { 1 } )  →  𝐵  ∈  ℝ+ ) | 
						
							| 14 | 13 | adantr | ⊢ ( ( 𝐵  ∈  ( ℝ+  ∖  { 1 } )  ∧  𝐴  ∈  ℝ+ )  →  𝐵  ∈  ℝ+ ) | 
						
							| 15 |  | relogbdiv | ⊢ ( ( 𝐵  ∈  ( ℂ  ∖  { 0 ,  1 } )  ∧  ( 𝐴  ∈  ℝ+  ∧  𝐵  ∈  ℝ+ ) )  →  ( 𝐵  logb  ( 𝐴  /  𝐵 ) )  =  ( ( 𝐵  logb  𝐴 )  −  ( 𝐵  logb  𝐵 ) ) ) | 
						
							| 16 | 11 12 14 15 | syl12anc | ⊢ ( ( 𝐵  ∈  ( ℝ+  ∖  { 1 } )  ∧  𝐴  ∈  ℝ+ )  →  ( 𝐵  logb  ( 𝐴  /  𝐵 ) )  =  ( ( 𝐵  logb  𝐴 )  −  ( 𝐵  logb  𝐵 ) ) ) | 
						
							| 17 |  | logbid1 | ⊢ ( ( 𝐵  ∈  ℂ  ∧  𝐵  ≠  0  ∧  𝐵  ≠  1 )  →  ( 𝐵  logb  𝐵 )  =  1 ) | 
						
							| 18 | 8 17 | syl | ⊢ ( 𝐵  ∈  ( ℝ+  ∖  { 1 } )  →  ( 𝐵  logb  𝐵 )  =  1 ) | 
						
							| 19 | 18 | adantr | ⊢ ( ( 𝐵  ∈  ( ℝ+  ∖  { 1 } )  ∧  𝐴  ∈  ℝ+ )  →  ( 𝐵  logb  𝐵 )  =  1 ) | 
						
							| 20 | 19 | oveq2d | ⊢ ( ( 𝐵  ∈  ( ℝ+  ∖  { 1 } )  ∧  𝐴  ∈  ℝ+ )  →  ( ( 𝐵  logb  𝐴 )  −  ( 𝐵  logb  𝐵 ) )  =  ( ( 𝐵  logb  𝐴 )  −  1 ) ) | 
						
							| 21 | 16 20 | eqtrd | ⊢ ( ( 𝐵  ∈  ( ℝ+  ∖  { 1 } )  ∧  𝐴  ∈  ℝ+ )  →  ( 𝐵  logb  ( 𝐴  /  𝐵 ) )  =  ( ( 𝐵  logb  𝐴 )  −  1 ) ) |