Metamath Proof Explorer


Theorem logbge0b

Description: The logarithm of a number is nonnegative iff the number is greater than or equal to 1. (Contributed by AV, 30-May-2020)

Ref Expression
Assertion logbge0b ( ( 𝐵 ∈ ( ℤ ‘ 2 ) ∧ 𝑋 ∈ ℝ+ ) → ( 0 ≤ ( 𝐵 logb 𝑋 ) ↔ 1 ≤ 𝑋 ) )

Proof

Step Hyp Ref Expression
1 relogbval ( ( 𝐵 ∈ ( ℤ ‘ 2 ) ∧ 𝑋 ∈ ℝ+ ) → ( 𝐵 logb 𝑋 ) = ( ( log ‘ 𝑋 ) / ( log ‘ 𝐵 ) ) )
2 1 breq2d ( ( 𝐵 ∈ ( ℤ ‘ 2 ) ∧ 𝑋 ∈ ℝ+ ) → ( 0 ≤ ( 𝐵 logb 𝑋 ) ↔ 0 ≤ ( ( log ‘ 𝑋 ) / ( log ‘ 𝐵 ) ) ) )
3 relogcl ( 𝑋 ∈ ℝ+ → ( log ‘ 𝑋 ) ∈ ℝ )
4 3 adantl ( ( 𝐵 ∈ ( ℤ ‘ 2 ) ∧ 𝑋 ∈ ℝ+ ) → ( log ‘ 𝑋 ) ∈ ℝ )
5 eluz2nn ( 𝐵 ∈ ( ℤ ‘ 2 ) → 𝐵 ∈ ℕ )
6 5 nnrpd ( 𝐵 ∈ ( ℤ ‘ 2 ) → 𝐵 ∈ ℝ+ )
7 relogcl ( 𝐵 ∈ ℝ+ → ( log ‘ 𝐵 ) ∈ ℝ )
8 6 7 syl ( 𝐵 ∈ ( ℤ ‘ 2 ) → ( log ‘ 𝐵 ) ∈ ℝ )
9 8 adantr ( ( 𝐵 ∈ ( ℤ ‘ 2 ) ∧ 𝑋 ∈ ℝ+ ) → ( log ‘ 𝐵 ) ∈ ℝ )
10 eluz2gt1 ( 𝐵 ∈ ( ℤ ‘ 2 ) → 1 < 𝐵 )
11 loggt0b ( 𝐵 ∈ ℝ+ → ( 0 < ( log ‘ 𝐵 ) ↔ 1 < 𝐵 ) )
12 6 11 syl ( 𝐵 ∈ ( ℤ ‘ 2 ) → ( 0 < ( log ‘ 𝐵 ) ↔ 1 < 𝐵 ) )
13 10 12 mpbird ( 𝐵 ∈ ( ℤ ‘ 2 ) → 0 < ( log ‘ 𝐵 ) )
14 13 adantr ( ( 𝐵 ∈ ( ℤ ‘ 2 ) ∧ 𝑋 ∈ ℝ+ ) → 0 < ( log ‘ 𝐵 ) )
15 ge0div ( ( ( log ‘ 𝑋 ) ∈ ℝ ∧ ( log ‘ 𝐵 ) ∈ ℝ ∧ 0 < ( log ‘ 𝐵 ) ) → ( 0 ≤ ( log ‘ 𝑋 ) ↔ 0 ≤ ( ( log ‘ 𝑋 ) / ( log ‘ 𝐵 ) ) ) )
16 4 9 14 15 syl3anc ( ( 𝐵 ∈ ( ℤ ‘ 2 ) ∧ 𝑋 ∈ ℝ+ ) → ( 0 ≤ ( log ‘ 𝑋 ) ↔ 0 ≤ ( ( log ‘ 𝑋 ) / ( log ‘ 𝐵 ) ) ) )
17 logge0b ( 𝑋 ∈ ℝ+ → ( 0 ≤ ( log ‘ 𝑋 ) ↔ 1 ≤ 𝑋 ) )
18 17 adantl ( ( 𝐵 ∈ ( ℤ ‘ 2 ) ∧ 𝑋 ∈ ℝ+ ) → ( 0 ≤ ( log ‘ 𝑋 ) ↔ 1 ≤ 𝑋 ) )
19 2 16 18 3bitr2d ( ( 𝐵 ∈ ( ℤ ‘ 2 ) ∧ 𝑋 ∈ ℝ+ ) → ( 0 ≤ ( 𝐵 logb 𝑋 ) ↔ 1 ≤ 𝑋 ) )