Metamath Proof Explorer


Theorem logbge0b

Description: The logarithm of a number is nonnegative iff the number is greater than or equal to 1. (Contributed by AV, 30-May-2020)

Ref Expression
Assertion logbge0b
|- ( ( B e. ( ZZ>= ` 2 ) /\ X e. RR+ ) -> ( 0 <_ ( B logb X ) <-> 1 <_ X ) )

Proof

Step Hyp Ref Expression
1 relogbval
 |-  ( ( B e. ( ZZ>= ` 2 ) /\ X e. RR+ ) -> ( B logb X ) = ( ( log ` X ) / ( log ` B ) ) )
2 1 breq2d
 |-  ( ( B e. ( ZZ>= ` 2 ) /\ X e. RR+ ) -> ( 0 <_ ( B logb X ) <-> 0 <_ ( ( log ` X ) / ( log ` B ) ) ) )
3 relogcl
 |-  ( X e. RR+ -> ( log ` X ) e. RR )
4 3 adantl
 |-  ( ( B e. ( ZZ>= ` 2 ) /\ X e. RR+ ) -> ( log ` X ) e. RR )
5 eluz2nn
 |-  ( B e. ( ZZ>= ` 2 ) -> B e. NN )
6 5 nnrpd
 |-  ( B e. ( ZZ>= ` 2 ) -> B e. RR+ )
7 relogcl
 |-  ( B e. RR+ -> ( log ` B ) e. RR )
8 6 7 syl
 |-  ( B e. ( ZZ>= ` 2 ) -> ( log ` B ) e. RR )
9 8 adantr
 |-  ( ( B e. ( ZZ>= ` 2 ) /\ X e. RR+ ) -> ( log ` B ) e. RR )
10 eluz2gt1
 |-  ( B e. ( ZZ>= ` 2 ) -> 1 < B )
11 loggt0b
 |-  ( B e. RR+ -> ( 0 < ( log ` B ) <-> 1 < B ) )
12 6 11 syl
 |-  ( B e. ( ZZ>= ` 2 ) -> ( 0 < ( log ` B ) <-> 1 < B ) )
13 10 12 mpbird
 |-  ( B e. ( ZZ>= ` 2 ) -> 0 < ( log ` B ) )
14 13 adantr
 |-  ( ( B e. ( ZZ>= ` 2 ) /\ X e. RR+ ) -> 0 < ( log ` B ) )
15 ge0div
 |-  ( ( ( log ` X ) e. RR /\ ( log ` B ) e. RR /\ 0 < ( log ` B ) ) -> ( 0 <_ ( log ` X ) <-> 0 <_ ( ( log ` X ) / ( log ` B ) ) ) )
16 4 9 14 15 syl3anc
 |-  ( ( B e. ( ZZ>= ` 2 ) /\ X e. RR+ ) -> ( 0 <_ ( log ` X ) <-> 0 <_ ( ( log ` X ) / ( log ` B ) ) ) )
17 logge0b
 |-  ( X e. RR+ -> ( 0 <_ ( log ` X ) <-> 1 <_ X ) )
18 17 adantl
 |-  ( ( B e. ( ZZ>= ` 2 ) /\ X e. RR+ ) -> ( 0 <_ ( log ` X ) <-> 1 <_ X ) )
19 2 16 18 3bitr2d
 |-  ( ( B e. ( ZZ>= ` 2 ) /\ X e. RR+ ) -> ( 0 <_ ( B logb X ) <-> 1 <_ X ) )