| Step | Hyp | Ref | Expression | 
						
							| 1 |  | relogbval |  |-  ( ( B e. ( ZZ>= ` 2 ) /\ X e. RR+ ) -> ( B logb X ) = ( ( log ` X ) / ( log ` B ) ) ) | 
						
							| 2 | 1 | breq2d |  |-  ( ( B e. ( ZZ>= ` 2 ) /\ X e. RR+ ) -> ( 0 <_ ( B logb X ) <-> 0 <_ ( ( log ` X ) / ( log ` B ) ) ) ) | 
						
							| 3 |  | relogcl |  |-  ( X e. RR+ -> ( log ` X ) e. RR ) | 
						
							| 4 | 3 | adantl |  |-  ( ( B e. ( ZZ>= ` 2 ) /\ X e. RR+ ) -> ( log ` X ) e. RR ) | 
						
							| 5 |  | eluz2nn |  |-  ( B e. ( ZZ>= ` 2 ) -> B e. NN ) | 
						
							| 6 | 5 | nnrpd |  |-  ( B e. ( ZZ>= ` 2 ) -> B e. RR+ ) | 
						
							| 7 |  | relogcl |  |-  ( B e. RR+ -> ( log ` B ) e. RR ) | 
						
							| 8 | 6 7 | syl |  |-  ( B e. ( ZZ>= ` 2 ) -> ( log ` B ) e. RR ) | 
						
							| 9 | 8 | adantr |  |-  ( ( B e. ( ZZ>= ` 2 ) /\ X e. RR+ ) -> ( log ` B ) e. RR ) | 
						
							| 10 |  | eluz2gt1 |  |-  ( B e. ( ZZ>= ` 2 ) -> 1 < B ) | 
						
							| 11 |  | loggt0b |  |-  ( B e. RR+ -> ( 0 < ( log ` B ) <-> 1 < B ) ) | 
						
							| 12 | 6 11 | syl |  |-  ( B e. ( ZZ>= ` 2 ) -> ( 0 < ( log ` B ) <-> 1 < B ) ) | 
						
							| 13 | 10 12 | mpbird |  |-  ( B e. ( ZZ>= ` 2 ) -> 0 < ( log ` B ) ) | 
						
							| 14 | 13 | adantr |  |-  ( ( B e. ( ZZ>= ` 2 ) /\ X e. RR+ ) -> 0 < ( log ` B ) ) | 
						
							| 15 |  | ge0div |  |-  ( ( ( log ` X ) e. RR /\ ( log ` B ) e. RR /\ 0 < ( log ` B ) ) -> ( 0 <_ ( log ` X ) <-> 0 <_ ( ( log ` X ) / ( log ` B ) ) ) ) | 
						
							| 16 | 4 9 14 15 | syl3anc |  |-  ( ( B e. ( ZZ>= ` 2 ) /\ X e. RR+ ) -> ( 0 <_ ( log ` X ) <-> 0 <_ ( ( log ` X ) / ( log ` B ) ) ) ) | 
						
							| 17 |  | logge0b |  |-  ( X e. RR+ -> ( 0 <_ ( log ` X ) <-> 1 <_ X ) ) | 
						
							| 18 | 17 | adantl |  |-  ( ( B e. ( ZZ>= ` 2 ) /\ X e. RR+ ) -> ( 0 <_ ( log ` X ) <-> 1 <_ X ) ) | 
						
							| 19 | 2 16 18 | 3bitr2d |  |-  ( ( B e. ( ZZ>= ` 2 ) /\ X e. RR+ ) -> ( 0 <_ ( B logb X ) <-> 1 <_ X ) ) |