| Step |
Hyp |
Ref |
Expression |
| 1 |
|
relogbval |
|- ( ( B e. ( ZZ>= ` 2 ) /\ X e. RR+ ) -> ( B logb X ) = ( ( log ` X ) / ( log ` B ) ) ) |
| 2 |
1
|
breq1d |
|- ( ( B e. ( ZZ>= ` 2 ) /\ X e. RR+ ) -> ( ( B logb X ) < 1 <-> ( ( log ` X ) / ( log ` B ) ) < 1 ) ) |
| 3 |
|
relogcl |
|- ( X e. RR+ -> ( log ` X ) e. RR ) |
| 4 |
3
|
adantl |
|- ( ( B e. ( ZZ>= ` 2 ) /\ X e. RR+ ) -> ( log ` X ) e. RR ) |
| 5 |
|
1red |
|- ( ( B e. ( ZZ>= ` 2 ) /\ X e. RR+ ) -> 1 e. RR ) |
| 6 |
|
eluz2nn |
|- ( B e. ( ZZ>= ` 2 ) -> B e. NN ) |
| 7 |
6
|
nnrpd |
|- ( B e. ( ZZ>= ` 2 ) -> B e. RR+ ) |
| 8 |
|
relogcl |
|- ( B e. RR+ -> ( log ` B ) e. RR ) |
| 9 |
7 8
|
syl |
|- ( B e. ( ZZ>= ` 2 ) -> ( log ` B ) e. RR ) |
| 10 |
|
eluz2gt1 |
|- ( B e. ( ZZ>= ` 2 ) -> 1 < B ) |
| 11 |
|
loggt0b |
|- ( B e. RR+ -> ( 0 < ( log ` B ) <-> 1 < B ) ) |
| 12 |
7 11
|
syl |
|- ( B e. ( ZZ>= ` 2 ) -> ( 0 < ( log ` B ) <-> 1 < B ) ) |
| 13 |
10 12
|
mpbird |
|- ( B e. ( ZZ>= ` 2 ) -> 0 < ( log ` B ) ) |
| 14 |
9 13
|
jca |
|- ( B e. ( ZZ>= ` 2 ) -> ( ( log ` B ) e. RR /\ 0 < ( log ` B ) ) ) |
| 15 |
14
|
adantr |
|- ( ( B e. ( ZZ>= ` 2 ) /\ X e. RR+ ) -> ( ( log ` B ) e. RR /\ 0 < ( log ` B ) ) ) |
| 16 |
|
ltdivmul |
|- ( ( ( log ` X ) e. RR /\ 1 e. RR /\ ( ( log ` B ) e. RR /\ 0 < ( log ` B ) ) ) -> ( ( ( log ` X ) / ( log ` B ) ) < 1 <-> ( log ` X ) < ( ( log ` B ) x. 1 ) ) ) |
| 17 |
4 5 15 16
|
syl3anc |
|- ( ( B e. ( ZZ>= ` 2 ) /\ X e. RR+ ) -> ( ( ( log ` X ) / ( log ` B ) ) < 1 <-> ( log ` X ) < ( ( log ` B ) x. 1 ) ) ) |
| 18 |
9
|
recnd |
|- ( B e. ( ZZ>= ` 2 ) -> ( log ` B ) e. CC ) |
| 19 |
18
|
mulridd |
|- ( B e. ( ZZ>= ` 2 ) -> ( ( log ` B ) x. 1 ) = ( log ` B ) ) |
| 20 |
19
|
adantr |
|- ( ( B e. ( ZZ>= ` 2 ) /\ X e. RR+ ) -> ( ( log ` B ) x. 1 ) = ( log ` B ) ) |
| 21 |
20
|
breq2d |
|- ( ( B e. ( ZZ>= ` 2 ) /\ X e. RR+ ) -> ( ( log ` X ) < ( ( log ` B ) x. 1 ) <-> ( log ` X ) < ( log ` B ) ) ) |
| 22 |
7
|
anim2i |
|- ( ( X e. RR+ /\ B e. ( ZZ>= ` 2 ) ) -> ( X e. RR+ /\ B e. RR+ ) ) |
| 23 |
22
|
ancoms |
|- ( ( B e. ( ZZ>= ` 2 ) /\ X e. RR+ ) -> ( X e. RR+ /\ B e. RR+ ) ) |
| 24 |
|
logltb |
|- ( ( X e. RR+ /\ B e. RR+ ) -> ( X < B <-> ( log ` X ) < ( log ` B ) ) ) |
| 25 |
24
|
bicomd |
|- ( ( X e. RR+ /\ B e. RR+ ) -> ( ( log ` X ) < ( log ` B ) <-> X < B ) ) |
| 26 |
23 25
|
syl |
|- ( ( B e. ( ZZ>= ` 2 ) /\ X e. RR+ ) -> ( ( log ` X ) < ( log ` B ) <-> X < B ) ) |
| 27 |
21 26
|
bitrd |
|- ( ( B e. ( ZZ>= ` 2 ) /\ X e. RR+ ) -> ( ( log ` X ) < ( ( log ` B ) x. 1 ) <-> X < B ) ) |
| 28 |
17 27
|
bitrd |
|- ( ( B e. ( ZZ>= ` 2 ) /\ X e. RR+ ) -> ( ( ( log ` X ) / ( log ` B ) ) < 1 <-> X < B ) ) |
| 29 |
2 28
|
bitrd |
|- ( ( B e. ( ZZ>= ` 2 ) /\ X e. RR+ ) -> ( ( B logb X ) < 1 <-> X < B ) ) |