| Step | Hyp | Ref | Expression | 
						
							| 1 |  | relogbval |  |-  ( ( B e. ( ZZ>= ` 2 ) /\ X e. RR+ ) -> ( B logb X ) = ( ( log ` X ) / ( log ` B ) ) ) | 
						
							| 2 | 1 | breq1d |  |-  ( ( B e. ( ZZ>= ` 2 ) /\ X e. RR+ ) -> ( ( B logb X ) < 1 <-> ( ( log ` X ) / ( log ` B ) ) < 1 ) ) | 
						
							| 3 |  | relogcl |  |-  ( X e. RR+ -> ( log ` X ) e. RR ) | 
						
							| 4 | 3 | adantl |  |-  ( ( B e. ( ZZ>= ` 2 ) /\ X e. RR+ ) -> ( log ` X ) e. RR ) | 
						
							| 5 |  | 1red |  |-  ( ( B e. ( ZZ>= ` 2 ) /\ X e. RR+ ) -> 1 e. RR ) | 
						
							| 6 |  | eluz2nn |  |-  ( B e. ( ZZ>= ` 2 ) -> B e. NN ) | 
						
							| 7 | 6 | nnrpd |  |-  ( B e. ( ZZ>= ` 2 ) -> B e. RR+ ) | 
						
							| 8 |  | relogcl |  |-  ( B e. RR+ -> ( log ` B ) e. RR ) | 
						
							| 9 | 7 8 | syl |  |-  ( B e. ( ZZ>= ` 2 ) -> ( log ` B ) e. RR ) | 
						
							| 10 |  | eluz2gt1 |  |-  ( B e. ( ZZ>= ` 2 ) -> 1 < B ) | 
						
							| 11 |  | loggt0b |  |-  ( B e. RR+ -> ( 0 < ( log ` B ) <-> 1 < B ) ) | 
						
							| 12 | 7 11 | syl |  |-  ( B e. ( ZZ>= ` 2 ) -> ( 0 < ( log ` B ) <-> 1 < B ) ) | 
						
							| 13 | 10 12 | mpbird |  |-  ( B e. ( ZZ>= ` 2 ) -> 0 < ( log ` B ) ) | 
						
							| 14 | 9 13 | jca |  |-  ( B e. ( ZZ>= ` 2 ) -> ( ( log ` B ) e. RR /\ 0 < ( log ` B ) ) ) | 
						
							| 15 | 14 | adantr |  |-  ( ( B e. ( ZZ>= ` 2 ) /\ X e. RR+ ) -> ( ( log ` B ) e. RR /\ 0 < ( log ` B ) ) ) | 
						
							| 16 |  | ltdivmul |  |-  ( ( ( log ` X ) e. RR /\ 1 e. RR /\ ( ( log ` B ) e. RR /\ 0 < ( log ` B ) ) ) -> ( ( ( log ` X ) / ( log ` B ) ) < 1 <-> ( log ` X ) < ( ( log ` B ) x. 1 ) ) ) | 
						
							| 17 | 4 5 15 16 | syl3anc |  |-  ( ( B e. ( ZZ>= ` 2 ) /\ X e. RR+ ) -> ( ( ( log ` X ) / ( log ` B ) ) < 1 <-> ( log ` X ) < ( ( log ` B ) x. 1 ) ) ) | 
						
							| 18 | 9 | recnd |  |-  ( B e. ( ZZ>= ` 2 ) -> ( log ` B ) e. CC ) | 
						
							| 19 | 18 | mulridd |  |-  ( B e. ( ZZ>= ` 2 ) -> ( ( log ` B ) x. 1 ) = ( log ` B ) ) | 
						
							| 20 | 19 | adantr |  |-  ( ( B e. ( ZZ>= ` 2 ) /\ X e. RR+ ) -> ( ( log ` B ) x. 1 ) = ( log ` B ) ) | 
						
							| 21 | 20 | breq2d |  |-  ( ( B e. ( ZZ>= ` 2 ) /\ X e. RR+ ) -> ( ( log ` X ) < ( ( log ` B ) x. 1 ) <-> ( log ` X ) < ( log ` B ) ) ) | 
						
							| 22 | 7 | anim2i |  |-  ( ( X e. RR+ /\ B e. ( ZZ>= ` 2 ) ) -> ( X e. RR+ /\ B e. RR+ ) ) | 
						
							| 23 | 22 | ancoms |  |-  ( ( B e. ( ZZ>= ` 2 ) /\ X e. RR+ ) -> ( X e. RR+ /\ B e. RR+ ) ) | 
						
							| 24 |  | logltb |  |-  ( ( X e. RR+ /\ B e. RR+ ) -> ( X < B <-> ( log ` X ) < ( log ` B ) ) ) | 
						
							| 25 | 24 | bicomd |  |-  ( ( X e. RR+ /\ B e. RR+ ) -> ( ( log ` X ) < ( log ` B ) <-> X < B ) ) | 
						
							| 26 | 23 25 | syl |  |-  ( ( B e. ( ZZ>= ` 2 ) /\ X e. RR+ ) -> ( ( log ` X ) < ( log ` B ) <-> X < B ) ) | 
						
							| 27 | 21 26 | bitrd |  |-  ( ( B e. ( ZZ>= ` 2 ) /\ X e. RR+ ) -> ( ( log ` X ) < ( ( log ` B ) x. 1 ) <-> X < B ) ) | 
						
							| 28 | 17 27 | bitrd |  |-  ( ( B e. ( ZZ>= ` 2 ) /\ X e. RR+ ) -> ( ( ( log ` X ) / ( log ` B ) ) < 1 <-> X < B ) ) | 
						
							| 29 | 2 28 | bitrd |  |-  ( ( B e. ( ZZ>= ` 2 ) /\ X e. RR+ ) -> ( ( B logb X ) < 1 <-> X < B ) ) |