Metamath Proof Explorer


Theorem logblt1b

Description: The logarithm of a number is less than 1 iff the number is less than the base of the logarithm. (Contributed by AV, 30-May-2020)

Ref Expression
Assertion logblt1b B 2 X + log B X < 1 X < B

Proof

Step Hyp Ref Expression
1 relogbval B 2 X + log B X = log X log B
2 1 breq1d B 2 X + log B X < 1 log X log B < 1
3 relogcl X + log X
4 3 adantl B 2 X + log X
5 1red B 2 X + 1
6 eluz2nn B 2 B
7 6 nnrpd B 2 B +
8 relogcl B + log B
9 7 8 syl B 2 log B
10 eluz2gt1 B 2 1 < B
11 loggt0b B + 0 < log B 1 < B
12 7 11 syl B 2 0 < log B 1 < B
13 10 12 mpbird B 2 0 < log B
14 9 13 jca B 2 log B 0 < log B
15 14 adantr B 2 X + log B 0 < log B
16 ltdivmul log X 1 log B 0 < log B log X log B < 1 log X < log B 1
17 4 5 15 16 syl3anc B 2 X + log X log B < 1 log X < log B 1
18 9 recnd B 2 log B
19 18 mulid1d B 2 log B 1 = log B
20 19 adantr B 2 X + log B 1 = log B
21 20 breq2d B 2 X + log X < log B 1 log X < log B
22 7 anim2i X + B 2 X + B +
23 22 ancoms B 2 X + X + B +
24 logltb X + B + X < B log X < log B
25 24 bicomd X + B + log X < log B X < B
26 23 25 syl B 2 X + log X < log B X < B
27 21 26 bitrd B 2 X + log X < log B 1 X < B
28 17 27 bitrd B 2 X + log X log B < 1 X < B
29 2 28 bitrd B 2 X + log B X < 1 X < B