Metamath Proof Explorer


Theorem logblt1b

Description: The logarithm of a number is less than 1 iff the number is less than the base of the logarithm. (Contributed by AV, 30-May-2020)

Ref Expression
Assertion logblt1b B2X+logBX<1X<B

Proof

Step Hyp Ref Expression
1 relogbval B2X+logBX=logXlogB
2 1 breq1d B2X+logBX<1logXlogB<1
3 relogcl X+logX
4 3 adantl B2X+logX
5 1red B2X+1
6 eluz2nn B2B
7 6 nnrpd B2B+
8 relogcl B+logB
9 7 8 syl B2logB
10 eluz2gt1 B21<B
11 loggt0b B+0<logB1<B
12 7 11 syl B20<logB1<B
13 10 12 mpbird B20<logB
14 9 13 jca B2logB0<logB
15 14 adantr B2X+logB0<logB
16 ltdivmul logX1logB0<logBlogXlogB<1logX<logB1
17 4 5 15 16 syl3anc B2X+logXlogB<1logX<logB1
18 9 recnd B2logB
19 18 mulridd B2logB1=logB
20 19 adantr B2X+logB1=logB
21 20 breq2d B2X+logX<logB1logX<logB
22 7 anim2i X+B2X+B+
23 22 ancoms B2X+X+B+
24 logltb X+B+X<BlogX<logB
25 24 bicomd X+B+logX<logBX<B
26 23 25 syl B2X+logX<logBX<B
27 21 26 bitrd B2X+logX<logB1X<B
28 17 27 bitrd B2X+logXlogB<1X<B
29 2 28 bitrd B2X+logBX<1X<B