Metamath Proof Explorer


Theorem logltb

Description: The natural logarithm function on positive reals is strictly monotonic. (Contributed by Steve Rodriguez, 25-Nov-2007)

Ref Expression
Assertion logltb A+B+A<BlogA<logB

Proof

Step Hyp Ref Expression
1 relogiso log+Isom<,<+
2 df-isom log+Isom<,<+log+:+1-1 ontox+y+x<ylog+x<log+y
3 1 2 mpbi log+:+1-1 ontox+y+x<ylog+x<log+y
4 3 simpri x+y+x<ylog+x<log+y
5 breq1 x=Ax<yA<y
6 fveq2 x=Alog+x=log+A
7 6 breq1d x=Alog+x<log+ylog+A<log+y
8 5 7 bibi12d x=Ax<ylog+x<log+yA<ylog+A<log+y
9 breq2 y=BA<yA<B
10 fveq2 y=Blog+y=log+B
11 10 breq2d y=Blog+A<log+ylog+A<log+B
12 9 11 bibi12d y=BA<ylog+A<log+yA<Blog+A<log+B
13 8 12 rspc2v A+B+x+y+x<ylog+x<log+yA<Blog+A<log+B
14 4 13 mpi A+B+A<Blog+A<log+B
15 fvres A+log+A=logA
16 fvres B+log+B=logB
17 15 16 breqan12d A+B+log+A<log+BlogA<logB
18 14 17 bitrd A+B+A<BlogA<logB