Metamath Proof Explorer


Theorem logltb

Description: The natural logarithm function on positive reals is strictly monotonic. (Contributed by Steve Rodriguez, 25-Nov-2007)

Ref Expression
Assertion logltb A + B + A < B log A < log B

Proof

Step Hyp Ref Expression
1 relogiso log + Isom < , < +
2 df-isom log + Isom < , < + log + : + 1-1 onto x + y + x < y log + x < log + y
3 1 2 mpbi log + : + 1-1 onto x + y + x < y log + x < log + y
4 3 simpri x + y + x < y log + x < log + y
5 breq1 x = A x < y A < y
6 fveq2 x = A log + x = log + A
7 6 breq1d x = A log + x < log + y log + A < log + y
8 5 7 bibi12d x = A x < y log + x < log + y A < y log + A < log + y
9 breq2 y = B A < y A < B
10 fveq2 y = B log + y = log + B
11 10 breq2d y = B log + A < log + y log + A < log + B
12 9 11 bibi12d y = B A < y log + A < log + y A < B log + A < log + B
13 8 12 rspc2v A + B + x + y + x < y log + x < log + y A < B log + A < log + B
14 4 13 mpi A + B + A < B log + A < log + B
15 fvres A + log + A = log A
16 fvres B + log + B = log B
17 15 16 breqan12d A + B + log + A < log + B log A < log B
18 14 17 bitrd A + B + A < B log A < log B