Metamath Proof Explorer


Theorem relogiso

Description: The natural logarithm function on positive reals determines an isomorphism from the positive reals onto the reals. (Contributed by Steve Rodriguez, 25-Nov-2007)

Ref Expression
Assertion relogiso log + Isom < , < +

Proof

Step Hyp Ref Expression
1 reefiso exp Isom < , < +
2 isocnv exp Isom < , < + exp -1 Isom < , < +
3 1 2 ax-mp exp -1 Isom < , < +
4 dfrelog log + = exp -1
5 isoeq1 log + = exp -1 log + Isom < , < + exp -1 Isom < , < +
6 4 5 ax-mp log + Isom < , < + exp -1 Isom < , < +
7 3 6 mpbir log + Isom < , < +